1887
Volume 4, Issue 3‐4
  • E-ISSN: 1365-2117

Abstract

Abstract

The elastic thickness of the continental lithosphere is strongly ‘bi‐modal’. Foreland basins reflect this bi‐modality with narrow, deep basins (e.g. Apennines) and wide, shallow ones (e.g. Ganges). The bi‐modal distribution cannot be explained by thermal models which describe the relationship between elastic thickness and plate age in the oceans, suggesting the involvement of factors other than secular cooling. The high values (80–90 km) are consistent with present‐day temperature gradients of the cratons and the scatter within cratons may be explained by changes in the radiogenic heat production. The low values (10–20 km), however, are more difficult to explain. Foreland basins develop by flexure in front of thrust/fold loads as they advance over former passive margins and onto the cratons. Recent studies suggest that passive margins are underlain by highly attenuated crust and lithosphere which has a low elastic thickness that remains low for long periods (> 108 yr) of time. Foreland basins may inherit these low values as they migrate over a passive margin. Stratigraphic modelling suggests that the low elastic thicknesses would have a profound effect on the development of foreland basins predicting as they do the asymmetry, the pattern of onlap and, the transition from the ‘underfilled’ to ‘overfilled’ phase. Why stretched crust and lithosphere is so weak on long time‐scales is enigmatic. Rifting, however, seems to proceed in such a way that the strong uppermost part of the crust is effectively ‘de‐coupled’ from any support that it might otherwise receive from the strong underlying mantle.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.1992.tb00043.x
2007-11-06
2024-03-29
Loading full text...

Full text loading...

References

  1. Allen, P. A., Crampton, S. L. & Sinclair, H. D. (1991) The inception and early evolution of the North Alpine Foreland Basin, Switzerland. Basin Res.3, 143–163.
    [Google Scholar]
  2. Barton, P. J. & Wood, R. J. (1984) Tectonic evolution of the North Sea Basin: Crustal stretching and subsidence. Geopkys. JR. astr. Soc.79, 987–1022.
    [Google Scholar]
  3. Beaumont, C. (1981) Foreland basins. Geopkys. JJi. astro. Soc.65, 291–329.
    [Google Scholar]
  4. Bechtel, T. D., Forsyth, D. W., Sharpton, V. L. & Grieve, R. A. F. (1990) Variations in effective elastic thickness of the North American lithosphere. Nature343, 636–638.
    [Google Scholar]
  5. Brace, W. F. & Kohlstedt, D. L. (1980) Limits on lithospheric stress imposed by laboratory experiments. J. geopkys. Res.85, 6248–6252.
    [Google Scholar]
  6. Burov, E. V., KoganM. G., Lyon‐Caen, H. & Molnar, P. (1990) Gravity anomalies, the deep structure, and dynamic processes beneath the Tien Shan. Earth Planet. Set. Letts.96, 367–383.
    [Google Scholar]
  7. Calmant, S. & Cazenave, A. (1986) The effective elastic lithosphere under the Cook‐Austral and Society islands. Earth Planet. Sri. Letts.77, 187–202.
    [Google Scholar]
  8. Coakley, B. & Watts, A. B. (1991) Tectonic Controls on the development of unconformities: The North Slope, Alaska. Tectonics10, 101–130.
    [Google Scholar]
  9. Cook, F. A., Brown, L. D., Kaufman, S., Oliver, J. E. & Petersen, T. A. (1983) COCORP seismic profiling of the Appalachian orogen beneath the coastal plain of Georgia. Bull. geol. Soc. Am.92, 738–748.
    [Google Scholar]
  10. Crittenden, M D. (1970) Discussion. Can. J. Earth Sri.7, 727–729.
    [Google Scholar]
  11. Dewey, J. F. (1982) Plate tectonics and the evolution of the British Isles. J. geol Soc. Land.139, 371–412.
    [Google Scholar]
  12. Dorman, L. M. & Lewis, B. T. R. (1970) Experimental isostasy 1: Theory of determination of the Earth's response to a concentrated load. J. geophys. Res.175, 3357–3365.
    [Google Scholar]
  13. Fowler, S. & McKenzie, D. P. (1989) Gravity Studies of the Rockall and Exmouth Plateaux using SEASAT altimetry. Basin Res.2, 27–34.
    [Google Scholar]
  14. Fulton, R.J. & Walcott, R. I. (1975) Title. Mem. geol. Soc. Am.142, 163–173.
    [Google Scholar]
  15. Goetze, C. & Evans, B. (1979) Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geopkys. J. R. astr. Soc.59, 463–478.
    [Google Scholar]
  16. Grotzinger, J. & Royden, L. (1990) Elastic strength of the Slavecraton at 1.9 GyT and implications for the thermal evolution of the continents. Nature347, 64–66.
    [Google Scholar]
  17. Homewood, P., Allen, P. A. & Williams, G. D. (1986) Dynamics of the Molasse Basin of western Switzerland. In: Foreland Basins (Ed. by P. A.Allen and P.Homewood), Spec. Pubis Int. Ass. Sedim.8, 199–218.
    [Google Scholar]
  18. Houseknecht, D. W. (1986) Evolution from passive margin to foreland basin: the Atoka formation of the Arkoma basin, south‐central USA. In: Foreland Basins (Ed. by P. A.Allen and P.Homewood), Spec. Pubis Int. Ass. Sedim.8, 327–346.
    [Google Scholar]
  19. Jordan, T. E. (1981) Thrust loads and foreland basin evolution, Cretaceous, western United States. Bull. Am. Ass. Petrol. Geol.65, 2506–2520.
    [Google Scholar]
  20. Karner, G. D., Steckler, M S. & Thorne, J. (1983) Long‐term mechanical properties of the continental lithosphere. Nature304, 250–253.
    [Google Scholar]
  21. Karner, G. D. & Watts, A. B. (1982) On isostasy at Atlantic‐type continental margins. J. geopkys. Res.87, 2923–2948.
    [Google Scholar]
  22. Karner, G. D. & Watts, A. B. (1983) Gravity anomalies and flexure of the lithosphere at mountain ranges. J. geophys. Res.88, 10,449‐10,477.
    [Google Scholar]
  23. Koch, P. S., Christie, J. M. & George, R. P. (1980) Flow law of ‘wet’ quartzite in the a‐field. EOS, Trans. Am. Geopkys. Un.61, 376.
    [Google Scholar]
  24. Kominz, M. A. & Bond, G. C. (1986) Geophysical modelling of the geothermal history of foreland basins. Nature320, 252–256.
    [Google Scholar]
  25. Kruse, S. & McNutt, M K. (1988) Compensation of Paleozoic orogens: A comparison of the Urals to the Appalachians. Tectonophys.154, 1–17.
    [Google Scholar]
  26. Kuo, B.‐Y. & Parmentier, E. M. (1986) Flexure and thickening of the lithosphere at the East Pacific Rise. Geopkys. Res. Lett.13, 681–684.
    [Google Scholar]
  27. Lerner‐Lam, A. L. & Jordan, T. H. (1987) How thick are the continentsJ. geophys. Res.92, 14,007‐14,026.
    [Google Scholar]
  28. Lewis, B. T. R. & Dorman, L. M. (1970) Experimental Isostasy 2: An isostaric model for the U.S‐A. derived from gravity and topographic data. J. geophys. Res.75, 3367–3386.
    [Google Scholar]
  29. Lyon‐Caen, H. & Molnar, P. (1983) Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere. J. geophys. Res.88, 8171–8191.
    [Google Scholar]
  30. McConnell, R. K. (1968) V iscosity of the mantle from relaxation time spectra of isostaric adjustment. J. geophys. Res.73, 7089–7105.
    [Google Scholar]
  31. McNutt, M. & Parker, R. L. (1978) Isostasy in Australia and the evolution of the compensation mechanism. Science199, 773–775.
    [Google Scholar]
  32. McNutt, M. K. (1984) Lithospheric flexure and thermal anomalies. J geopkys. Res.89, 11,180‐11,194.
    [Google Scholar]
  33. McNutt, M. K., Diament, M. & Kogan, M. G. (1988) Variations of elastic plate thickness it continental thrust belts. J. geophys. Res.93, 8825–8838.
    [Google Scholar]
  34. McNutt, M. K. & Menard, H. W. (1982) Constraints on yield strength in the oceanic lithosphere derived from observations of flexure. Geophys. J.71, 363–394.
    [Google Scholar]
  35. Menke, W. (1981) The effect of load shape on the deflection of thin elastic plates. Geopkys.J R. astr. Soc.65, 571–577.
    [Google Scholar]
  36. Nunn, J. A. & Sleep, N. H. (1984) Thermal contraction and flexure of intracratonal basins: A three‐dimensional study of the Michigan Basin. Geophys. J. R. astr. Soc.76, 587–635.
    [Google Scholar]
  37. Parsons, B. E. & Sclater, J. G. (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J. geophys. Res.82, 803–827.
    [Google Scholar]
  38. Pfiffner, O. A. (1986) Evolution of the north Alpine foreland basin in the Central Alps. In: Foreland Basins (Ed. by P. A.Allen and P.Homewood). Spec. Pubis Int. Ass. Scdm.8, 219–228.
    [Google Scholar]
  39. Plnet, B., Jaupart, C., Mareschal, J.‐CGariepy, C., BlenfaitG. & Lapointe, R.. (in press) Heat flow and structure of the lithosphere m the Eastern Canadian Shield.
  40. Royden, L. & Karner, G. D. (1984) Flexure of the lithosphere beneath the Apennine and Carpathian foredeep basins. Nature309, 142–144.
    [Google Scholar]
  41. Sheffels, B. & McNutt, M. (1986) Role of subsurface loads and regional compensation in the isostatic balance of the Transverse Ranges, California: Evidence for intracontinental subduction. J. geophys. Res.91, 6419–6431.
    [Google Scholar]
  42. Sinclair, H. D., Coakley, B. C., Allen, P. A. & Watts, A. B. (1991) Simulation of foreland basin stratigraphy using a diffusion model of mountain belt uplift and erosion: an example from the central Alps, Switzerland. Tectonics10, 599–620.
    [Google Scholar]
  43. Smith, W. H. F., Staudigel, H., Watts, A. B. & Pringle, M S. (1989) The Magellan Seamounts: Early Cretaceous record of the South Pacific isotopic and thermal anomaly. J. geophys. Res.94, 10,501‐10,523.
    [Google Scholar]
  44. Snyder, D. B. & Barazangi, M. (1986) Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observations. Tectonics5, 361–373.
    [Google Scholar]
  45. Steckler, M. S. (1985) Uplift and extension in the Gulf of Suez: Indications of induced mantle convection. Nature317, 135–139.
    [Google Scholar]
  46. Steckler, M. S. & Ten Brink, VS. (1986) Lithospheric strength variations as a control on new plate boundaries: examples from the Northern Red Sea region. Earth Planet. Sci. Letts.79, 120–132.
    [Google Scholar]
  47. Stockmal, G. S., Beaumont, C. & Boutilier, R. (1986) Geodynamic models of convergent margin tectonics: Transition from rifted margin to overthrust belt and consequences for foreland basin development. Bull. Am. Ass. Petrol. Ceot.70, 181–190.
    [Google Scholar]
  48. Tankard, A. J. (1986) On the depositional response to thrusting and lithospheric flexure: Examples from the Appalachian and Rocky Mountain basins. In: Foreland Basins (Ed. by P. A.Allen and P.Homewood), Spec. Pubis Int. Ass. Sedim.8, 369–392.
    [Google Scholar]
  49. Von Herzen, R. P., Cordery, M. J., Detrick, R. S. & Fang, C. (1989) Heat flow and the thermal origin of hot spot swells: The Hawaiian swell revisited. J. geophys. Res.94, 13,783‐13,799.
    [Google Scholar]
  50. Vink, G. C., Morgan, W.J. & Wu‐Ling, Z. (1984) Preferential rifting of continents: A source of displaced terranes. J. geophys Res.89, 10,072‐10,076.
    [Google Scholar]
  51. Walcott, R. I. (1970) Isostatic response to loading of the crust in Canada. Can. J. Earth Sci.7, 716–727.
    [Google Scholar]
  52. Watts, A. B. (1978) An analysis of isostasy in the world's oceans: 1. Hawaiian‐Emperor Seamoum Chain. J. geophys. Res.83. 5989–6004.
    [Google Scholar]
  53. Watts, A. B. (1981) The U S. Atlantic continental margin: Subsidence history, crustal structure and thermal evolution. Am. Ass. Petrol. Geol., Education Course19, 75.
    [Google Scholar]
  54. Watts, A. B. (1988) Gravity anomalies, crustal structure and flexure of the lithosphere at the Baltimore Canyon Trough. Earth Planet. Sci. Letts.89, 221–238.
    [Google Scholar]
  55. Watts, A. B., Duncan, R. A. & Larson, R. L. (1988) The origin of the Louisville Ridge and its relationship to the Eltanin Fracture Zone system. J. geophys Res.93, 3051–3077.
    [Google Scholar]
  56. Watts, A. B. & Ten Brink, VS. (1989) Crustal structure, flexure and subsidence history of the Hawaiian Islands. J. geophys. Res.94, 10,473‐10,500.
    [Google Scholar]
  57. Weissel, J. K. & Karner, G. D. (1989) Flexural uplift of nft flanks due to mechanical unloading of the lithosphere during extension. J. geophys. Res.94, 13,919‐13,950.
    [Google Scholar]
  58. Wessel, P. (1992) Thermal stresses and the bimodal distribution of elastic thickness estimates of oceanic lithosphere. J geophys. Res.97, 14,177‐14,194.
    [Google Scholar]
  59. Wessel, P. & Haxby, W. F. (1990) Thermal stresses, differential subsidence, and flexure at oceanic fracture zones. J. geophys. Res.95, 375–391.
    [Google Scholar]
  60. White, N. & McKenzie, D. P. (1988) Formation of the ‘Steer's Head’ Geometry of sedimentary basins by differential stretching of the crust and mantle. Geology16, 250–253.
    [Google Scholar]
  61. Zoetemeijer, R., Desegaulx, P., Gloetingh, S., Roure, F. & Moretti, L. (1990) Lithospheric dynamics and tectonicstrati‐ graphic evolution of the Ebro Basin. J geophys. Res.95, 2701–2711.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.1992.tb00043.x
Loading
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error