1887
Volume 5 Number 2
  • E-ISSN: 1365-2117

Abstract

Abstract

Faulting exerts an important control upon drainage development in active extensional basins and thus helps determine the architecture of the sedimentary infill to a synrift basin. Examples of the interaction between faulting and drainage from the western United States and central Greece may be grouped into a relatively small number of classes based upon the structural position of a drainage catchment: footwall, hangingwall, fault offset and axial. Our examples illustrate the diversity of erosional effects that might arise because of variations in the spacing, orientation and segmentation of faults and their interactions. Where basement lithology is similar, footwall catchments are generally smaller, shorter and steeper than those of the hangingwall. Footwall‐sourced alluvial fans and fan deltas are: generally smaller in area than those sourced from similar lithologies in the hangingwall. Wide fault offsets often give rise to large drainage catchments in the footwall. The development of axial drainage depends upon the breaching of transverse bedrock ridges by headward stream erosion or by lake overflow. Once breaching has occurred the direction of axial stream flow is controlled by the potential developed between basins of contrasting widths. Fault migration and propagation leads to the uplift, erosion and resedimentation of the sedimentary infill to formerly active basins, leading to the cutting of footwall unconformities. The outward sediment flux from structurally controlled catchments is modulated in an important way by lithology and runoff. The greatest contrasts in basement lithology arise when fault migration and propagation have occurred, such that the sedimentary fill to previously active basins is uplifted, incised and eroded by the establishment of large new drainage systems in the footwalls of younger faults. Drainage patterns in areas where faults interact can shed light on the relative timing of activity and therefore the occurrence of fault migration and propagation. Facies and palaeocurrent trends in ancient grabens may only be correctly interpreted when observations are made on a length scale of 10–20 km, comparable to that of the largest fault segments.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.1993.tb00059.x
2007-11-06
2024-04-25
Loading full text...

Full text loading...

References

  1. Alexander, J. A. & Ieeder, M. R. (1987) Active tectonic control of alluvial architecture. In: Fluvial Sedimentology (Ed. by F. G.Etheridge & R. M.Flores ), Spec. Publ. Soc. econ. Miner. Petrol.39, 243–252.
    [Google Scholar]
  2. Anderson, R. E., Zoback, M. L. & Thompson, G. A. (1983) Implications of selected subsurface data on the structural form and evolution of some basins in the northern Basin and Range province, Nevada and Utah. Bull. geol. Soc. Am.94, 1055–1072.
    [Google Scholar]
  3. Barr, D. (1987) Structural/stratigraphic models for extensi‐onal basins of halfgraben type. J. Struct. Geol.9, 491–500.
    [Google Scholar]
  4. Bell, J. W. (1984) Quaternary Fault Map of Nevada: Reno Sheet Map 79. Nevada Bureau of Mines and Geology.
  5. Bell, J. W. & Katzer, T. (1987) Surficial geology, hydrology, and late Quaternary tectonics of the IXL Canyon area, Nevada. Bull. Nevada Bur. Mines Geol., 102.
  6. Bell, J. W. & Katzer, T. (1990) Timing of late Quaternary faulting in the 1954 Dixie Valley earthquake area, central Nevada. Geology18, 622–625.
    [Google Scholar]
  7. Bentham, P., Collier, R. E. L., Gawthorpe, R. L., Leeder, M. R., Prossor, S. & Stark, C. (1991) Tectono‐sedimentary development of an extensional basin: the Neogene Megara Basin, Greece. J. geol. Soc, Lond.148, 331–343.
    [Google Scholar]
  8. Bousquet, N., Dufaure, J. J. & Pechoux, P. Y. (1983) Temps historique et evolution des paysages Egeen. Mediterranée2, 3–10.
    [Google Scholar]
  9. Bridge, J. S. & Leeder, M. R. (1979) A simulation model of alluvial stratigraphy. Sedimentology26, 617–644.
    [Google Scholar]
  10. Brooks, M. & Ferentinos, G. (1984) Tectonics and sedimentation in the Gulf of Corinth and the Zakynthos and Kefallinia Channels, western Greece. Tectonophysics101, 25–54.
    [Google Scholar]
  11. Bucknam, R. C. & Anderson, R. E. (1979) Estimation of fault‐scarp ages from a scarp‐hcight‐slope‐angle relationship. Geology7, 11–14.
    [Google Scholar]
  12. Carson, M. A. & Kirkby, M. J. (1972) Hillslope Form and Process.Cambridge University Press, Cambridge .
    [Google Scholar]
  13. Chorley, R. J. (1962) Geomorphology and general systems theory. Prof. Pap. US geol. Sun500B.
    [Google Scholar]
  14. Christianson, R. L. & Lipman, P. W. (1972) Cenozoic volcanism and plate‐tectonic evolution of the western United States. 2. Late Cenozoic. Phil. Trans. Roy. Soc. Land.271, 249–284.
    [Google Scholar]
  15. Collier, R. E. L. (1990) Eustatic and tectonic controls upon Quaternary coastal sedimentation in the Corinth basin, Greece. J. geol. Soc., Land.147, 301–314.
    [Google Scholar]
  16. Crone, A. J. & Haller, K. M. (1989) Segmentation of basin‐and‐range normal faults: examples from east‐central Idaho and southwestern Montana. US Geol. Sunv., Open-File Report89–315, 110–130.
    [Google Scholar]
  17. Crone, A. J. & Haller, K. M. (1991) Segmentation and the coseismic behaviour of Basin‐and‐Range normal faults: examples from east‐central Idaho and southwestern Montana, U.S.A. J. Struct. Geol.13, 151–164.
    [Google Scholar]
  18. Crone, A. J. & Machette, M. (1984) Surface faulting associated with the Borah Peak earthquake, central Idaho. Geology12, 664–667.
    [Google Scholar]
  19. Depolo, C. M., Ceark, D. G., Slemmons, D. B. & Kamelli, A. R. (1991) Historical surface faulting in the Basin and Range province, western North America: implications for fault segmentation. J. Struct. Geol.13, 123–136.
    [Google Scholar]
  20. Doutsos, T. & Piper, D. J. W. (1990) Sedimentary and morphological evolution of the Quaternary, eastern Corinth rift, Greece: first stages of continental rifting. Bull. geol. Soc. Am.102, 812–829.
    [Google Scholar]
  21. Dufaure, J. J. (1978) Le Peloponnese, Carte Geomorphologtque.Institute Geographic, Paris .
    [Google Scholar]
  22. Ebinger, C. J. (1989) Geometric and kinematic development of border faults and accommodation zones, Kivu‐Rusizi rift, Africa. Tectonics8, 117–133.
    [Google Scholar]
  23. Ferentinos, G., Papatheodorov, G. & Doutsos, T. (1989) Sediment transport processes on an active submarine fault escarpment of an asymmetric graben: Gulf of Corinth, Greece. Mar. Geol.83, 43–61.
    [Google Scholar]
  24. Fonseca, J. (1983) The Sou Hills: a barrier to faulting in the central Nevada seismic belt. J. Geophys. Res.93, 475–489.
    [Google Scholar]
  25. Gans, P. B. & Miller, E. L. (1983) Style of mid‐Tertiary extension in east‐central Nevada. Utah Geol. Min. Survey Spec. Studies59, 107–159.
    [Google Scholar]
  26. Gilbert, G. K. (1880) Report on the Geology of the Henry Mountains. US Geographical and Geological Survey of the Rocky Mountain Region.
  27. Hack, J. T. (1957) Studies of longitudinal stream profiles in Virginia and Maryland. US geol. Surv. Prof. Pap.294B.
    [Google Scholar]
  28. Hanks, T. C., Bucknam, R. C., Lajoie, K. R. & Wallae, R. E. (1984) Modification of wave‐cut and faulfing‐controlled landforms. J. Geophys. Res.89, 5771–5790.
    [Google Scholar]
  29. Hastings, D. D. (1979) Results of exploratory drilling, northern Fallon Basin, western Nevada. Rocky Mountain Association of Geologists, 1979 Basin and Range Symposium..
  30. Hudson, M. R. & Geissman, J. VV. (1987) Paleomagnetic and structural evidence for middle Tertiary counterclockwise block rotation in the Dixie Valley region, west‐central Nevada. Geology15, 638–642.
    [Google Scholar]
  31. Jackson, J. A. (1987) Active normal faulting and crustal extension. Spec. Purl. geol. Soc. Land.28, 3–17.
    [Google Scholar]
  32. Jackson, J. A., Gagnepain, J., Houseman, G., King, G. C. P., Papadimitriou, P., Soufleris, C. & Virieux, J. (1982a) Seismicity, normal faulting, and the geomorphological development of the Gulf of Corinth (Greece): the Corinth earthquakes of February and March 1981. Earth planet. Set. Lett.57, 377–397.
    [Google Scholar]
  33. Jackson, J. A., King, G. & Vita‐Finzi, C. (1982b) The neotectonics of the Aegean: an alternative view. Earth planet Sci. Lett.61, 303–318.
    [Google Scholar]
  34. Jackson, J. A. & Leeder, M. R. (1993) Drainage systems and the evolution of normal faults: an example from Pleasant Valley, Nevada. J. Struct. Geol. (in press).
  35. Jackson, J. A. & White, N. J. (1989) Normal faulting in the upper continental crust: observations from regions of active extension. J. Struct. Geol.11, 15–36.
    [Google Scholar]
  36. Jackson, J. A., White, N. J., Garfunkel, Z. & Anderson, H. (1988) Relations between normal‐fault geometry, tilting and. vertical motions in extensional terrains: an example from the southern Gulf of Suez. J. Struct. Geol10, 155–170.
    [Google Scholar]
  37. Keraudren, B. & Sorel, D. (1987) The terraces of Corinth (Greece)–a detailed record of eustatic sea‐level variations during the last 500 000 years. Mar. Geol.77, 99–107.
    [Google Scholar]
  38. King, G. C. P., Ouyang, Z. X., Papadimitriou, P., Deschamps, A., Gagnepain, J., Houseman, G., Jackson, J. A., Souefleris, C. & Virieux, J. (1985) The evolution of the Gulf of Corinth (Greece): an aftershock study of the 1981 earthquakes. Geophys. J. R. astr. Soc80, 677–693.
    [Google Scholar]
  39. Kissel, C. & Laj, C. (1988) The Tertiary geodynamical evolution of the Aegean arc: a palaeomagnctic reconstruction. Tectonophysics146, 183–201.
    [Google Scholar]
  40. Larsen, P‐H. (1988) Relay structures in a lower Permian basement‐involved extension system, East Greenland. J. Struct. Geol.10, 3–8.
    [Google Scholar]
  41. Leeder, M. R. (1991) Denudation, vertical crustal movements and sedimentary basin infill. Geol. Runds.80, 441–458.
    [Google Scholar]
  42. Leeder, M. R. & Alexander, J. (1987) The origin and tectonic significance of asymmetrical meander belts. Sedimentology34, 217–226.
    [Google Scholar]
  43. Leeder, M. R., Seger, M. J. & Stark, C. P. (1991) Sedimentology and tectonic geomorphology adjacent to active and inactive normal faults in the Megara Basin and Alkyonides Gulf, Central Greece. J. geol. Soc. Land.148, 331–343.
    [Google Scholar]
  44. Leopold, L. B., Wolman, M. G. & Miller, J. P. (1964) Fluvial Processes in Geomorphology.Freeman, San Francisco . Normal faulting and drainage.
    [Google Scholar]
  45. Lyon‐Caen, H., Armijo, R., Drakopoulos, J., Baskoutass, J., Dkelibassis, N., Gaulon, R., Kouskouna, V., Latoussakis, J., Makropoulos, K., Papaidimitriou, P., Papanastassiou, D. & Pedotti, G. (1988) The 1986 Kalamata (South Peloponnesus) earthquake: detailed study of a normal fault, evidences for east‐west extension in the Hellenic arc. J. Geophys. Res.93, 14967–15000.
    [Google Scholar]
  46. Mayer, L. (1986) Tectonic geomorphology of escarpments and mountain fronts. In: Tectonic geomorphology of escarpments and mountain fronts (Ed. by R.Wallace ), pp. 125–135. National Academy of Sciences.
    [Google Scholar]
  47. McKee, E. H. (1971) Tertiary igneous chronology of the Great Basin of Western United States–implications for tectonic models. Bull. geol. Soc. Am.82, 3497–3502.
    [Google Scholar]
  48. McKenzie, D. P. & Jackson, J. A. (1986) A block model of distributed deformation by faulting. J, geol. Soc. Lond.143, 249–253.
    [Google Scholar]
  49. Mercier, J. L. (1976) La ncotectonique, ses methods et ses buts. Un example: Pare egeen (Mediterranee orientale). Rev. geol. Dynamique Geogr. Phys.18, 323–346.
    [Google Scholar]
  50. Mercier, J. L., Delibassis, N., Gautier, A., Jarrige, J. J., Lemille, F., Philip, H., Sebrier, M. & Sorel, D. (1979) La neotectonique de Arc Egeen. Rev. geol. Dynamique Geogr. Phys.21, 67–92.
    [Google Scholar]
  51. Mkercier, J. L., Vergely, P. & Simeakis, K. (1989) Extensional tectonic regimes in the Aegean basins during the Cenozoic. Basin Res.2, 49–71.
    [Google Scholar]
  52. Morley, C. K., Nelson, R. A., Patton, T. L. & Munn, S. G. (1990) Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in rifts. Bull. Am. Ass. petrol. Geol.74, 1234–1253.
    [Google Scholar]
  53. Morton, W. H. & Black, R. (1975) Crustal attenuation in Afar. In: Crustal attenuation in Afar (Ed. by A.Pilger & A.Rossler ), pp. 55–65. Deutsche Forschauna, Stuttgart .
    [Google Scholar]
  54. Moslley, M. P. (1972) An experimental study of rill erosion. MS thesis, Colorado State University.
  55. Nosker, S. A. (1981) Stratigraphy of the structure of the Sou Hills, Pershing County, Nevada.MS thesis, University of Nevada, Reno .
  56. Okaya, D. A. & Thompson, G. A. (1985) Geometry of Cenozoic extensional faulting: Dixie Valley, Nevada. Tectonics4, 107–125.
    [Google Scholar]
  57. Ori, G. G. (1989) Geologic history of the extensional basin of the Gulf of Corinth (?Miocene‐Pleistocene), Greece. Geology17, 918–921.
    [Google Scholar]
  58. Peacock, D. C. P. & Sanderson, D. J. (1991) Displacements, segment linkage and relay ramps in normal fault zones. J. Struct. Geol.13, 721–733.
    [Google Scholar]
  59. Philip, H. (1974) Etude neotectonique des nvages Egeens en Locride et Eubee nord occidentale (Grèce). Thesis, Universite des Science et Techniques du Languedoc, Montpellier .
  60. Pouumenos, G., Albers, G. & Doutsos, T. (1989) Neotectonic evolution of the central section of the Corinth Graben. Z. dt. geol. Ges.140, 173–182.
    [Google Scholar]
  61. Proffett, J. M. (1977) Cenozoic geology of the Yerington district, Nevada, and implications for the nature and origin of Basin and Range faulting. Bull. geol. Soc. Am.88, 247–266.
    [Google Scholar]
  62. Roberts, S. C. (1988) Active normal faulting in central Greece and western Turkey.PhD thesis, University of Cambridge.
  63. Roberts, S. & Jackson, J. A. (1991) Active normal faulting in central Greece: an overview. In: The Geometry of Normal Faults (Ed. by A. M.Roberts , G.Yielding & B.Freeman ), Spec. Publ. geol. Soc. Land.56, 125–142.
    [Google Scholar]
  64. Roshndahl, B. R. (1987) Architecture of continental rifts with special reference to East Africa. Ann. Rev. Earth planet. Sci.15, 445–503.
    [Google Scholar]
  65. Ruppel, E. T. & Lopez, D. A. (1988) Regional geology and mineral deposits in and near the central part of the Lemhi Range, Lemhi County, Idaho. US geol. Surv. Prof. Pap.1480.
    [Google Scholar]
  66. Scholz, C. H. (1990) The Mechanics of Earthquakes and Faulting.Cambridge University Press, Cambridge .
    [Google Scholar]
  67. Scott, K. M. & Williams, R. P. (1978) Erosion and sediment yields in the Transverse Ranges, Southern California. US geol. Surv. Prof. Pap.1030.
    [Google Scholar]
  68. Scott, W. E., Pierce, K. L. & Hait, M. H. (1985) Quaternary tectonic setting of the 1983 Borah Peak earthquake, central Idaho. Bull, seismol. Soc. Am.75, 1053–1066.
    [Google Scholar]
  69. Shimazaki, K. (1986) Small and large earthquakes: the effects of the thickness of the seismogenic layer and the free surface. In: Small and large earthquakes: the effects of the thickness of the seismogenic layer and the free surface (Ed. by S.Das , J.Boatwright & C. H.Scholz ), pp. 209–216. American Geophysical Union.
    [Google Scholar]
  70. Skipp, B. & Harding, S. T. (1985) Preliminary report on geology of Borah Peak area, Idaho, including interpretation of seismic and gravity data. US geol. Surv., Open-File Report85–290, 657–671.
    [Google Scholar]
  71. Slemmons, D. B. (1957) Geological effects of the Dixie Valley‐Fairview Peak, Nevada, earthquakes of December 16 1954. Bull, seismol. Soc. Am.47, 353–375.
    [Google Scholar]
  72. Stark, C. P. (1991) An invasion percolation model of drainage network evolution. Nature352, 423–425.
    [Google Scholar]
  73. Stein, R. S. & Barrientos, S. (1985) Planar high‐angle faulting in the Basin and Range: geodetic analysis of the 1983 Borah Peak, Idaho, earthquake. J. Geophys. Res.90, 11,355–11,366.
    [Google Scholar]
  74. Stewart, J. H. (1980) Regional tilt patterns of late Cenozoic basin‐range fault blocks, western United States. Bull. geol. Soc. Am.91, 460–464.
    [Google Scholar]
  75. Stewart, I. S. & Hancock, P. L. (1991) Scales of structural heterogeneity within neotectonic normal fault zones in the Aegean region. J Struct. Geol.13, 191–204.
    [Google Scholar]
  76. Susong, D. D., Janecke, S. U. & Bruhn, R. L. (1990) Structure of a fault segment boundary in the Lost River fault zone, Idaho, and possible effect on the 1983 Borah Peak earthquake rupture. Bull. Seismol. Soc. Am.80, 57–68.
    [Google Scholar]
  77. Thenhaus, P. C. & Barnhard, T. P. (1989) Regional termination and segmentation of Quaternary fault belts in the Great Basin, Nevada and Utah. Bull. Seismol. Soc. Am.79, 1426–1438.
    [Google Scholar]
  78. Wallace, R. E. (1977) Profiles and ages of young fault scarps, north‐central Nevada. Bull. geol. Soc. Am.88, 1267–1281.
    [Google Scholar]
  79. Wallace, R. E. (1978) Geometry and rates of changes of fault‐generated range fronts, north‐central Nevada. US geol. Surv. J. Res.6, 637–650.
    [Google Scholar]
  80. Wallace, R. E. (1979) Map of young fault scarps related to earthquakes in northcentral Nevada. US geol. Surv. Open‐File Report79–1554.
  81. Wallace, R. E. (1984) Faulting related to the 1915 earthquakes in Pleasant Valley, Nevada. US geol. Surv. Prof. Pap.1274.
    [Google Scholar]
  82. Wallace, R. E. & Whitney, R. A. (1984) Late Quaternary history of the Stillwater seismic gap, Nevada. Bull, seism. Soc. Am.74, 301–314.
    [Google Scholar]
  83. Wheeler, R. L. (1989) Persistent segment boundaries on basin‐range normal faults. US Ceol. Sum. Open File Report89–315, 432–444.
    [Google Scholar]
  84. Whitney, R. A. (1980) Structural‐tectonic analysis of northern Dixie Valley, Nevada.MS thesis, University of Nevada, Reno .
  85. Zhang, P., Slemmons, D. B. & Mao, F. (1991) Geometric pattern, rupture termination and fault segmentation of the Dixie Valley‐Pleasant Valley active normal fault system, Nevada, U.S.A. J. Struct. Geol.13, 165–176.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.1993.tb00059.x
Loading
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error