1887
Volume 6, Issue 2‐3
  • E-ISSN: 1365-2117

Abstract

Abstract

Backstripping and apatite fission track analysis are used to constrain the Mesozoic vertical motion of the eastern Australian basins (Eromanga, Surat and Clarence‐Moreton). The backstripping results show that subsidence was linear during the Jurassic, and the rate of subsidence shows an overall increase (by a factor of about 2) towards the eastern margin. The Cretaceous section is well preserved only in the Eromanga Basin, and the backstripping results show that the apparent subsidence rate increased by a factor of 5–10 during the Early Cretaceous. The sediments show a lithological cyclicity which is the result of a variable influx of volcanogenic detritus from the convergent eastern margin. The rapid Cretaceous subsidence corresponds to a large influx of this volcanogenic material, resulting in progressively non‐marine deposition at a time when global sea‐level was rising.

The apatite fission track data suggest that the Cretaceous section was probably deposited over the Surat and Clarence‐Moreton Basins but has since been eroded off. The exhumation‐induced cooling may have commenced earlier in the eastern region (Late Cretaceous to Early Tertiary) and slightly later to the west (Early to Middle Tertiary). Furthermore, the inferred total amount of removed section is greater (˜2.5 km) in the east than in the west (<1 km). The present‐day thermal regime in the Eromanga Basin is considered to be a relatively recent (<10Ma) phenomenon, as non‐zero fission track ages are maintained in sediments currently at temperatures of ˜120°C.

Overall, the regional backstripping and apatite fission track results support a model of platform tilting, This is related to the inferred subduction along a convergent margin on eastern Australia during the Jurassic to Early Cretaceous. The cessation of subduction, and subsequent opening of the Tasman Sea in the Late Cretaceous, was accompanied by uplift on the eastern margin and the termination of widespread deposition on the platform.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.1994.tb00077.x
2007-11-06
2024-03-28
Loading full text...

Full text loading...

References

  1. Andrews‐Speed, C. P., Oxburgh, E. R. & Cooper, B. A. (1984) Temperatures and depth‐dependent heat flow in the western North Sea. Bull. Am. Ass. Petrol. Geol., 68, 1764–1781.
    [Google Scholar]
  2. Brown, R. W., Rust, D. J.Summerfield, M. A., Gleadow, A. J. W. & Dewit, M. C. (1990) An early Cretaceous phase of accelerated erosion of the southwestern margin of Africa: evidence from fission track analysis and the offshore sedimentary record. Nucl. Tracks Radtat. Meas., 17, 339–350.
    [Google Scholar]
  3. Hurger, D. (1986) Palynology, cyclic sedimentation and palaeocnvironments in the late Mesozoic of the Eromanga Basin. In: Contributions to the Geology and Hydrocarbon Potential of the Eromanga Basin (Ed. by D. I.Gravestock , P. S.Moore , T. J.Mount and G. M.Pitt ), Spec. Publ. Geol. Soc.Aust., 12, 53–70.
    [Google Scholar]
  4. Cull, J. P. & Conley, D. (1983) Geothermal gradients and heat flow in Australian sedimentary basins. Bur. Miner. Resour. J. Aust. geol. Geophyes., 8, 329–337.
    [Google Scholar]
  5. Day, R. W., Whitaker, W. G., Murray, C. G., Wilson, I. H. & Grimes, K. G. (1983) Queensland Genlogy. Geological Society of Queensland Publ. 383.
    [Google Scholar]
  6. Duddy, I. R. (1987) Fission track thermal history assessment of the Eromanga‐Cooper Basin: an initial apatite study, In: A. J. W.Gleadow, I. R.Duddy, P. F.Green and J. F.Lovering. End of Grant Technical Report, NERDDC project no. 720.
  7. Dumitru, T. A. (1988) Subnormal geothermal gradients in the Great Valley forearc basin, California, during Franciscan subduction: a fission track study. Tecronics, 7, 1201–1221.
    [Google Scholar]
  8. Exon, N. F. & Burger, D. (1981) Sedimentary cycles in the Swat Basin and global changes of sea level. Bur. Miner. Resour. J. Aust. geol. Geophys., 6, 153–159.
    [Google Scholar]
  9. Exon, N. F. & Senior, B. R. (1976) The Cretaceous of the Eromanga and Surat Basins. Bur. Miner. Resour. J. Aust. geol. Geophys., 1, 33–50.
    [Google Scholar]
  10. Finiayson, D. M.
    , (Ed.) (1990) The Eromanga–Brisbane Geusczence Transeci. Bureau of Mineral Resources, Geology and Geophysics Bulletin 232.
    [Google Scholar]
  11. Finlayson., D. M., Leven, J. H., Wake‐Dyster, K. D. & Johnstone, D. W. (1990) A crustal image under the basins of southern Queensland along the Eromanga‐Brisbane Geoscience Transect. Bur. Miner. Resour. Geol. Geophys. Bull., 232, 152–175.
    [Google Scholar]
  12. Fowler, C. M. R. & Nisbet, E. G. (1985) The subsidence of the Williston Basin. Can. J. Earth Sci., 22, 408–415.
    [Google Scholar]
  13. Gallagher, K. (1988) The subsidence history and thermal stale of the Eromanga and Cooper Basins . PhD thesis, Australian National University.
  14. Gallagher, K. (1990) Permian‐Cretaceous subsidence history along the Eromanga‐Brisbane Geoscience Transect. Bur. Miner. Resour. Geol. Geophys. Bull., 232, 133–151.
    [Google Scholar]
  15. Gallagher, K., Hawkesworth, C. J. & Mantovani, M. S. M. (1994). The denudation history of the onshore continental margin of SE Brazil inferred from apatite fission track data. J. geophys. Res., in press.
  16. Gallagher, K. & Lambeck, K. (1989) Subsidence, sedimentation and sea‐level changes in the Eromanga Basin, Australia. Basin Res., 2, 115–131.
    [Google Scholar]
  17. Gleadow, A. J. W. (1981) Fission‐track dating methods: what are the real alternativesNuclear Tracks, 5, 3–14.
    [Google Scholar]
  18. Gleadow, A. J. W., Duddy, I. R., Green, P. F. & Hegarty, K. A. (1986a) Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth planet. Sci. Lett., 78, 245–254.
    [Google Scholar]
  19. Gleadow, A. J. W., Duddy, I. R., Green, P. F. & Lovering, J. F. (1986b) Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contrib. Miner. Petrol., 94, 405–415.
    [Google Scholar]
  20. Gleadow, A. J. W. & O'brien, P. E. (1994) Apatite fission track thermochronology and tectonics in the Clarence‐Moreton Basin of eastern Australia. A.G.S.O. Bull., in press.
  21. Green, P. F. (1989) Thermal and tectonic history of the East Midlands shelf (onshore U.K.) and surrounding regions assessed by apatite fission track analysis. J. geol. Soc. London, 146, 755–773.
    [Google Scholar]
  22. Green, P. F., Duddy, I. R., Gleadow, A. J. W. & Lovering, J. F., (1989a) Apatite fission‐track analysis as a paleotemperature indicator for hydrocarbon exploration. In Naeser, N. D. , & McCulloh, T. H. , (Eds), Thermal History of Sedimentaty Basins: Methods and Case Histories (Ed. by N. D.Naeser and T. H.McCulloh ), pp. 181–195. Springer Verlag, New York .
    [Google Scholar]
  23. Green, P. F., Duddy, I. R., Laslett, G. M., Hegarty, K. A., Gleadow, A. J. W. & Lovering, J. F. (1989b) Thermal annealing of fission tracks in apatite, 4, quantitative modelling techniques and extension to geological timescalcs. Chem. Geol. (Isotope Geoscience Section), 79, 155–182.
    [Google Scholar]
  24. Gurnis, M. (1992) Rapid continental subsidence following the initiation and evolution of subduction. Science, 255, 1556–1558.
    [Google Scholar]
  25. Habermehl, M. A. (1986) Regional groundwater movement, hydrochemistry and hydrocarbon migration in the Eromanga Basin. In: Contributions to the Geology and Hydrocarbon Potential oj the Eromanga Basin. (Ed. by D. I.Gravestock , P.Moore and G. M.Pitt), Spec. Publ. geol. Soc. Aust., 12, 353–376.
    [Google Scholar]
  26. Haq, B. U., Hardendol, J. & Vall., P. R. (1987) Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.
    [Google Scholar]
  27. Harland, W. B., Cox, A. V., Llewellyn, P. G., Pickton, C. A. G., Smith, A. G. & Walters, R. (1982) A Geologic Timescale. Cambridge University Press.
    [Google Scholar]
  28. Hill, K. C. & Gleadow, A. J. W. (1989) Uplift and thermal history of thc Papuan fold belt, Papua New Guinea: apatite fission track analysis. Aust. J. Earth Sci., 36, 515–539.
    [Google Scholar]
  29. Hunt, J. W. (1988) Sedimentation rates and coal formation in the Permian basins of eastern Australia. Aust. J. Earth Sci., 35, 259–274.
    [Google Scholar]
  30. Kominz, M. A. (1984) Ocean ridge volumes and sea level changes—an error analysis. In: Interregional Unconformities and Hydrocarbon Accumulations (Ed. by J. S.Schlee ), Mem. Am. Ass. petrol. Geol., 36, 109–127.
    [Google Scholar]
  31. Korsch, R. J., Harrington, H. J., Wake‐dyster, K. D., O'brien, P. E. & Finlayson, D. M. (1988) Sedimentary basins peripheral to the New England Orogen: their contribution to understanding New England tectonics, In: New England Orogen, Tectonics and Metallogenesis (Ed. by J. D.Kleeman ), pp. 134–140. Dept. of Geology and Geophysics, University of New England.
    [Google Scholar]
  32. Kuang, K. S. (1985) History and style of Cooper‐Eromanga Basin structures. Exploration Geophys., 16, 245–248.
    [Google Scholar]
  33. Laslett, G. M., Green, P. F., Duddy, I. R. & Gleadow, A. J. W. (1987) Thermal annealing of fission tracks in apatite, 2, a quantitative analysis. Chem. Geol. (Isotope Geoscience Section), 65, 1–15.
    [Google Scholar]
  34. Laslett, G. M., Kendall, W. S., Gleadow, A. J. W. & Duddy, I. R. (1982) Bias in the measurement of fission track length distribution. Nuclear Tracks, 6, 79–85.
    [Google Scholar]
  35. Mckenzif., D. P. (1978) Some remarks on the development of sedimentary basins. Earth planet. Sci. Lett., 40, 25–32.
    [Google Scholar]
  36. Middleton, M. F. (1989) A model for the formation of intracratonic sag basins, Geophys. J. Int., 99, 665–676.
    [Google Scholar]
  37. Miller, D. D. & Duddy, I. R. (1990) Early Cretaceous uplift and erosion of the northern Appalachian Basin, New York, based on apatite fission track analysis. Earth planet. Sci. Lett., 93, 35–49.
    [Google Scholar]
  38. Mitrovica, J. X., Beaumont, C. & Jarvis, J. T. (1989) Tilting of continental interiors by the dynamicdl effects of subduction. Tectonics, 8, 1079–1094.
    [Google Scholar]
  39. Moore, M. E., Gleadow, A. J. W. & Lovering, J. F. (1986) Thermal evolution of rifted continental margins: new evidence from fission tracks in basement apatites from southeastern Australia. Earth planet. Sci. Lett., 78, 255–270.
    [Google Scholar]
  40. Moore, P. S. (1986) Jurassic and Triassic stratigraphy and hydrocarbon potential of the Poolowanna trough (Simpson Desert region) northern South Australia. In: Contributions to the Geology and Hydrocarbon Potential of the Eromanga Basin (Ed. by D. I.Gravestock , P. S.Moore and G. M.Pitt), Spec. Publ. geol. Soc. Aust., 12, 39–51.
    [Google Scholar]
  41. Moore, P. S., Hobday, D. K., Main, H. & Sun, Z.C. (1986) Comparison of selected non‐marine petroleum bearing basins in Australia and China. Aust. petrol. Expl. Ass. J., 26, 285–309.
    [Google Scholar]
  42. Murray, C. G. (1990) Summary of geological developments along the Eromanga‐Hrisbane Geoscience Transect. Bur. Miner. Resour. Geol. Geophys. Bull., 232, 11–20.
    [Google Scholar]
  43. Murray, C. G., Fergusson, C. L., Flood, P. G.Whitaker, W. G. & Korsch, R. J. (1987) Plate tectonic model for the Carboniferous evolution of the New England Fold Belt. Aust. J. Earth Sci., 34, 213–236.
    [Google Scholar]
  44. Naeser, C. W. (1979) Thermal history of sedimentary basins from fission track dating of subsurfacc rocks. In: Aspects of Diagenesis. Spec. Publ. Soc. econ. Palatont. Miner., 26, 109–112.
    [Google Scholar]
  45. O'brien, P. E., Korsch, R. J., Wells, A. T., Sexton, M. J. & Wake‐Dyster, K. D. (1990) Mesozoic Basins at the eastern end of the Eromanga‐Brisbane Geoscience Transect: strike‐slip faulting and basin development. Bur. Miner. Resour. Geol. Geophys. Bull., 232, 117–132.
    [Google Scholar]
  46. Person, M., Toupin, D., Eadington, P. & Wieck, J. (1992), Hydrologic constraints on petroleum generation within the Cooper/Eromanga Basins, Australia. Progress Report. Dept. of Earth Sciences, University of New Hampshire.
    [Google Scholar]
  47. Pitt, G. M., (1986) Geothermal gradients, geothermal histories and the timing of thermal maturation in the Eromanga‐Cooper Basins. In: Contributions to the Geology and Hydrocarbon Potential of the Eromanga Basin (Ed. by D. I.Gravestock , P. S.Moore and G. M.Pitt), Spec. Publ. geol. Soc. Aust., 12, 323–351.
    [Google Scholar]
  48. Russell, M. & Gurnis, M. (1994) The planform of epeirogeny: vertical motions of Australia during the Cretaceous. Basin Res., 6, 63–76.
    [Google Scholar]
  49. Shaw, R. D. (1990) Development of thc Tasman Sea and Eastern Australian continental margin—a review. Bur. Miner. Resour. Geol. Geophys. Bull., 232, 53–66.
    [Google Scholar]
  50. Smart, J., Grimes, K. G., Doutch, H. F. & Pinchin, J. (1980) The Carpentaria and Karumba Basins, north Queensland. Bur. Miner. Resour. Geol. Geophys. Bull., 202.
  51. Smart, J. & Senior, B. R. (1980). Jurassic‐Cretaceous basins of northeastern Australia. In: The Geology and Geophysics of North Eastern Queensland (Ed. by R. A.Henderson and P. J.Stephenson ), pp. 315–328. Geol. Soc. Aust. (Qld. Div.).
    [Google Scholar]
  52. Senior, B. R., Mond, A. & Harrison, P. L. (1978) Geology of the Eromanga Basin. Bur. Min. Resources. Genl. Geophys. Bull., 167.
  53. Veevers, J. J.
    , (Ed.) (1981) Phanerozoic Earth History of Australia. Oxford University Press.
    [Google Scholar]
  54. Watts, A. B. & Steckler, M. S. (1079) Subsidence and eustasy at the continental margin of castern North Anicrica. AGU Maurice Ewing Series. 3, 218–234.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.1994.tb00077.x
Loading
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error