1887
Volume 24, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

This article presents combined stratigraphic, sedimentological, subsidence and provenance data for the Cretaceous–Palaeogene succession from the Zhepure Mountain of southern Tibet. This region records the northernmost sedimentation of the Tethyan passive margin of India, and this time interval represents the transition into continental collision with Asia. The uppermost Cretaceous Zhepure Shanpo and Jidula formations record the transition from pelagic into upper slope to delta‐plain environments. The Palaeocene–lower Eocene Zongpu Formation records a carbonate ramp that is overlain by the deep‐water Enba Formation (lower Eocene). The upper part of the Enba Formation records shallowing into a storm‐influenced, outer shelf environment. Detrital zircon U–Pb and Hf isotopic data indicate that the terrigenous strata of the Enba Formation were sourced from the Lhasa terrane. Unconformably overlying the Enba Formation is the Zhaguo Formation comprising fluvial deposits with evidence of recycling from the underlying successions. Backstripped subsidence analysis indicates shallowing during latest Cretaceous‐earliest Palaeocene time (Zhepure Shanpo and Jidula formations) driven by basement uplift, followed by stability (Zongpu Formation) until early Eocene time (Enba Formation) when accelerated subsidence occurred. The provenance, subsidence and stratigraphy suggest that the Enba and Zhaguo formations record foredeep and wedge‐top sedimentation respectively within the early Himalayan foreland basin. The underlying Zongpu Formation is interpreted to record the accumulation of a carbonate ramp at the margin of a submarine forebulge. The precursor tectonic uplift during latest Cretaceous time could either record surface uplift over a mantle plume related to the Réunion hotspot, or an early signal of lithospheric flexure related to oceanic subduction, continental collision or ophiolite obduction. The results indicate that the collision of India with Asia occurred before late Danian (. 62 Ma) time.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2012.00543.x
2012-02-20
2024-04-20
Loading full text...

Full text loading...

References

  1. Achache, J., Courtillot, V. & Zhou, Y.X. (1984) Paleogeographic and tectonic evolution of southern Tibet since middle cretaceous time – new paleomagnetic data and synthesis. J. Geophys. Res., 89, 311–339.
    [Google Scholar]
  2. Aitchison, J.C., Davis, A.M., Badengzhu, B. & Luo, H. (2002) New constraints on the India‐Asia collision: the Lower Miocene Gangrinboche conglomerates, Yarlung Tsangpo suture zone, Se Tibet. J. Asian Earth Sci., 21, 251–263.
    [Google Scholar]
  3. Aitchison, J.C., McDermid, I.R.C., Ali, J.R., Davis, A.M. & Zyabrev, S.V. (2007) Shoshonites in southern Tibet record Late Jurassic rifting of a Tethyan Intraoceanic island arc. J. Geol., 115, 197–213.
    [Google Scholar]
  4. Ali, J.R. & Aitchison, J.C. (2008) Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub‐continent from the Middle Jurassic through latest Eocene (166‐35 Ma). Earth‐Sci. Rev., 88, 145–166.
    [Google Scholar]
  5. Allen, P.A. & Allen, J.R. (2005) Basin Analysis: Principles and Applications. Wiley‐Blackwell, Oxford, UK.
    [Google Scholar]
  6. Barnolas, A. & Teixell, A. (1994) Platform sedimentation and collapse in a carbonate‐dominated margin of a foreland basin (Jaca basin, Eocene, southern Pyrenees). Geology, 22, 1107–1110.
    [Google Scholar]
  7. Beck, R.A., Burbank, D.W., Sercombe, W.J., Khan, A.M. & Lawrence, R.D. (1996) Late Cretaceous ophiolite obduction and Paleocene India‐Asia collision in the western‐most Himalaya. Geodin. Acta, 9, 114–144.
    [Google Scholar]
  8. Bosence, D. (2005) A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic. Sed. Geol., 175, 49–72.
    [Google Scholar]
  9. Burg, J.P., Proust, F., Tapponnier, P. & Chen, G.M. (1983) Deformation phases and tectonic evolution of the Lhasa block (southern Tibet, China)= Déformation Des Phases Et Évolution Tectonique Du Bloc Lhasa, Tibet Sud, Chine. Eclogae Geol. Helv., 76, 643–665.
    [Google Scholar]
  10. Cai, F.L., Ding, L. & Yue, Y.H. (2011) Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: implications for timing of India‐Asia collision. Earth Planet. Sci. Lett., 305, 195–206.
    [Google Scholar]
  11. Campbell, I.H. (2005) Large igneous provinces and the mantle plume hypothesis. Elements, 1, 265–269.
    [Google Scholar]
  12. Cande, S.C. & Stegman, D.R. (2011) Indian and African plate motions driven by the push force of the reunion plume head. Nature, 475, 47–52.
    [Google Scholar]
  13. Cawood, P.A., Johnson, M.R.W. & Nemchin, A.A. (2007) Early Palaeozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly. Earth Planet. Sci. Lett., 255, 70–84.
    [Google Scholar]
  14. Chen, J.S., Huang, B.C. & Sun, L.S. (2010) New constraints to the onset of the India‐Asia collision: paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 489, 189–209.
    [Google Scholar]
  15. Chenet, A.L., Quidelleur, X., Fluteau, F., Courtillot, V. & Bajpai, S. (2007) 40 K‐40 Ar dating of the Main Deccan large igneous province: further evidence of Ktb age and short duration. Earth Planet. Sci. Lett., 263, 1–15.
    [Google Scholar]
  16. Chu, M.F., Chung, S.L., Song, B.A., Liu, D.Y., O'Reilly, S.Y., Pearson, N.J., Ji, J.Q. & Wen, D.J. (2006) Zircon U‐Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34, 745–748.
    [Google Scholar]
  17. Chung, S.L., Chu, M.F., Zhang, Y.Q., Xie, Y.W., Lo, C.H., Lee, T.Y., Lan, C.Y., Li, X.H., Zhang, Q. & Wang, Y.Z. (2005) Tibetan tectonic evolution inferred from spatial and temporal variations in post‐collisional magmatism. Earth‐Sci. Rev., 68, 173–196.
    [Google Scholar]
  18. Clark, M.K., Farley, K.A., Zheng, D.W., Wang, Z.C. & Duvall, A.R. (2010) Early Cenozoic faulting of the northern Tibetan plateau margin from apatite (U‐Th)/He ages. Earth Planet. Sci. Lett., 296, 78–88.
    [Google Scholar]
  19. Copley, A., Avouac, J.P. & Royer, J.Y. (2010) India‐Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions. J. Geophys. Res. Solid Earth, 115, B03410, doi:10.1029/2009JB006634.
    [Google Scholar]
  20. Crampton, S.L. & Allen, P.A. (1995) Recognition of forebulge unconformities associated with early stage foreland basin development; example from the North Alpine Foreland Basin. AAPG Bulletin., 79, 1495–1514.
    [Google Scholar]
  21. Critelli, S. & Ingersoll, R.V. (1994) Sandstone petrology and provenance of the Siwalik Group (northwestern Pakistan and western‐southeastern Nepal). J. Sed. Res., 64, 815–823.
    [Google Scholar]
  22. DeCelles, P.G. & Giles, K.A. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  23. DeCelles, P.G., Gehrels, G.E., Quade, J. & Ojha, T.P. (1998a) Eocene early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics, 17, 741–765.
    [Google Scholar]
  24. DeCelles, P.G., Gehrels, G.E., Quade, J., Ojha, T.P., Kapp, P.A. & Upreti, B.N. (1998b) Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold‐thrust belt, western Nepal. Geol. Soc. Am. Bull., 110, 2–21.
    [Google Scholar]
  25. DeCelles, P.G., Gehrels, G.E., Quade, J., LaReau, B. & Spurlin, M. (2000) Tectonic implications of U‐Pl Zircon ages of the Himalayan orogenic belt in Nepal. Science, 288, 497–499.
    [Google Scholar]
  26. DeCelles, P.G., Robinson, D.M. & Zandt, G. (2002) Implications of shortening in the Himalayan fold‐thrust belt for uplift of the Tibetan Plateau. Tectonics, 21, 1062. doi:10.1029/2001TC001322.
    [Google Scholar]
  27. DeCelles, P.G., Gehrels, G.E., Najman, Y., Martin, A.J., Carter, A. & Garzanti, E. (2004) Detrital geochronology and geochemistry of Cretaceous‐Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet. Sci. Lett., 227, 313–330.
    [Google Scholar]
  28. DeCelles, P.G., Kapp, P., Quade, J. & Gehrels, G.E. (2011) Oligocene‐Miocene Kailas basin, southwestern Tibet: record of postcollisional upper‐plate extension in the Indus‐Yarlung suture zone. Geol. Soc. Am. Bull., 123, 1337–1362.
    [Google Scholar]
  29. Ding, L., Kapp, P. & Wan, X.Q. (2005) Paleocene‐Eocene record of ophiolite obduction and initial India‐Asia collision, South central Tibet. Tectonics, 24. doi:10.1029/2004TC001729.
    [Google Scholar]
  30. Dorobek, S.L. (1995) Synorogenic carbonate platforms and reefs in foreland basins: controls on stratigraphic evolution and platform/reef morphology. In: Stratigraphic Evolution of Foreland Basins (Ed. by S.L.Dorobek & G.M.Ross ) SEPM Spec. Publ., 52, 127–148.
    [Google Scholar]
  31. Dubois‐Cote, V., Hebert, R., Dupuis, C., Wang, C.S., Li, Y.L. & Dostal, J. (2005) Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet. Chem. Geol., 214, 265–286.
    [Google Scholar]
  32. Dupont‐Nivet, G., Lippert, P.C., van Hinsbergen, D.J.J., Meijers, M.J.M. & Kapp, P. (2010) Palaeolatitude and age of the Indo‐Asia collision: palaeomagnetic constraints. Geophys. J. Int., 182, 1189–1198.
    [Google Scholar]
  33. Dürr, S.B. (1996) Provenance of Xigaze fore‐arc basin clastic rocks (Cretaceous, South Tibet). Geol. Soc. Am. Bull., 108, 669–684.
    [Google Scholar]
  34. Einsele, G., Liu, B., Dürr, S., Frisch, W., Liu, G., Luterbacher, H.P., Ratschbacher, L., Ricken, W., Wendt, J., Wetzel, A., Yu, G. & Zheng, H. (1994) The Xigaze forearc basin: evolution and facies architecture (Cretaceous, Tibet). Sed. Geol., 90, 1–32.
    [Google Scholar]
  35. England, P. & Searle, M. (1986) The Cretaceous‐Tertiary deformation of the Lhasa block and its implications for crustal thickening in Tibet. Tectonics, 5, 1–14.
    [Google Scholar]
  36. Gaetani, M. & Garzanti, E. (1991) Multicyclic history of the northern India continental margin (northwestern Himalaya). AAPG Bulletin., 75, 1427–1446.
    [Google Scholar]
  37. Galewsky, J. (1998) The dynamics of foreland basin carbonate platforms: tectonic and eustatic controls. Basin Res., 10, 409–416.
    [Google Scholar]
  38. Gansser, A. (1964) Geology of the Himalayas. Interscience Publishers, London, UK.
    [Google Scholar]
  39. Garzanti, E. (1993) Sedimentary evolution and drowning of a passive margin shelf (Giumal Group; Zanskar Tethys Himalaya, India); palaeoenvironmental changes during final break‐up of Gondwanaland. Geol. Soc. Spec. Publ., 74, 277–298.
    [Google Scholar]
  40. Garzanti, E. (1999) Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. J. Asian Earth Sci., 17, 805–827.
    [Google Scholar]
  41. Garzanti, E. (2008) Comment On “When and where did India and Asia collide?’’ by Jonathan C. Aitchison, Jason R. Ali, and Aileen M. Davis. J. Geophys. Res. Solid Earth, 113. doi:10.1029/2007JB005276, 002008.
    [Google Scholar]
  42. Garzanti, E., Baud, A. & Mascle, G. (1987) Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodin. Acta, 1, 297–312.
    [Google Scholar]
  43. Garzanti, E., Sciunnach, D., Gaetani, M., Corfield, R.I., Watts, A.B. & Searle, M.P. (2005) Discussion on subsidence history of the North Indian continental margin, Zanskar‐Ladakh Himalaya, NW India. J. Geol. Soc., 162, 889–892.
    [Google Scholar]
  44. Gehrels, G.E., DeCelles, P.G., Martin, A., Ojha, T.P., Pinhassi, G. & Upreti, B.N. (2003) Initiation of the Himalayan orogen as an early Paleozoic thin‐skinned thrust belt. GSA Today, 13, 4–9.
    [Google Scholar]
  45. Gradstein, F.M., Ogg, J.G., Smith, A.G., Agterberg, F.P., Bleeker, W., Cooper, R.A., Davydov, V., Gibbard, P., Hinnov, L.A., House, M.R., Lourens, L., Luterbacher, H.P., Mcarthur, J., Melchin, M.J., Robb, L.J., Shergold, J.,Villeneuve, M., Wardlaw, B.R., ALI, J., Brinkhuis, H., Hilgen, F.J., Hooker, J., Howarth, R.J., Knoll, A.H., Laskar, J., Monechi, S., Powell, J., Plumb, K.A., Raffi, I ., Röhl, U., Sanfilippo, A., Schmitz, B., Shackleton, N.J., Shields, G.A., Strauss, H., Van dam, J., Veizer, J., Van Kolfschoten, T. & Wilson, D. (2004) A Geologic Time Scale 2004. Cambridge University Press, Cambridge, UK.
    [Google Scholar]
  46. Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O'Reilly, S.Y. & Shee, S.R. (2000) The Hf isotope composition of cratonic mantle: Lam‐Mc‐Icpms analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta, 64, 133–147.
    [Google Scholar]
  47. Guillot, S., Garzanti, E., Baratoux, D., Marquer, D., Maheo, G. & de Sigoyer, J. (2003) Reconstructing the total shortening history of the NW Himalaya. Geochem. Geophy. Geosy., 4, 1064, doi:10.1029/2002GC000484.
    [Google Scholar]
  48. Hao, Y. & Wan, X. (1985) The marine Cretaceous and Tertiary strata of Tingri, Xizang (Tibet). Contrib. Geol. Qinghai‐Xizang (Tibet), 17, 227–332.
    [Google Scholar]
  49. Heller, P.L., Angevine, C.L., Winslow, N.S. & Paola, C. (1988) Two‐phase stratigraphic model of foreland‐basin sequences. Geology, 16, 501–504.
    [Google Scholar]
  50. Heron, A.M. (1922) Geological results of the Mount Everest reconnaissance expedition. Reccord Geol. Surv. India, 54, 215–234.
    [Google Scholar]
  51. van Hinsbergen, D.J.J., Steinberger, B., Doubrovine, P.V. & Gassmoller, R. (2011) Acceleration and deceleration of India‐Asia convergence since the cretaceous: roles of mantle plumes and continental collision. J. Geophys. Res. Solid Earth, 116, B06101, doi: 10.1029/2010JB008051.
    [Google Scholar]
  52. Hodges, K.V. (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol. Soc. Am. Bull., 112, 324–350.
    [Google Scholar]
  53. Horton, B.K., Yin, A., Spurlin, M.S., Zhou, J.Y. & Wang, J.H. (2002) Paleocene‐Eocene syncontractional sedimentation in narrow, lacustrine‐dominated basins of east‐central Tibet. Geol. Soc. Am. Bull., 114, 771–786.
    [Google Scholar]
  54. Horton, B.K., Dupont‐Nivet, G., Zhou, J., Waanders, G.L., Butler, R.F. & Wang, J. (2004) Mesozoic‐Cenozoic evolution of the Xining‐Minhe and Dangchang basins, northeastern Tibetan Plateau: magnetostratigraphic and biostratigraphic results. J. Geophys. Res., 109, 1–15.
    [Google Scholar]
  55. Hu, X., Jansa, L. & Wang, C. (2008) Upper Jurassic‐Lower Cretaceous stratigraphy in south‐eastern Tibet: a comparison with the western Himalayas. Cretaceous Res., 29, 301–315.
    [Google Scholar]
  56. Hu, X., Jansa, L., Chen, L., Griffin, W.L., O'Reilly, S.Y. & Wang, J. (2010) Provenance of lower cretaceous W Long volcaniclastics in the Tibetan Tethyan Himalaya: implications for the final breakup of eastern Gondwana. Sed. Geol., 223, 193–205.
    [Google Scholar]
  57. Huang, B.C., Chen, J.S. & Yi, Z.Y. (2010) Paleomagnetic discussion of when and where India and Asia initially collided. Chin. J. Geophy. Chin. Ed., 53, 2045–2058.
    [Google Scholar]
  58. Jackson, S.E., Pearson, N.J., Griffin, W.L. & Belousova, E.A. (2004) The application of laser ablation‐inductively coupled plasma‐mass spectrometry to in situ U/Pb zircon geochronology. Chem. Geol., 211, 47–69.
    [Google Scholar]
  59. Jadoul, F., Berra, F. & Garzanti, E. (1998) The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (South Tibet). J. Asian Earth Sci., 16, 173–194.
    [Google Scholar]
  60. Ji, W.Q., Wu, F.Y., Chung, S.L., Li, J.X. & Liu, C.Z. (2009) Zircon U‐Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem. Geol., 262, 229–245.
    [Google Scholar]
  61. Kapp, P., Murphy, M.A., Yin, A., Harrison, T.M., Ding, L. & Guo, J.H. (2003) Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22, 1029, doi:10.1029/2001TC001332.
    [Google Scholar]
  62. Kapp, P., Yin, A., Harrison, T.M. & Ding, L. (2005) Cretaceous‐Tertiary shortening, basin development, and volcanism in central Tibet. Geol. Soc. Am. Bull., 117, 865–878.
    [Google Scholar]
  63. Kapp, P., DeCelles, P., Leier, A., Fabijanic, J., He, S., Pullen, A., Gehrels, G. & Ding, L. (2007) The Gangdese retroarc thrust belt revealed. GSA Today, 17, 4–9, doi: 10.1130/GSAT01707A.01701.
    [Google Scholar]
  64. Kelemen, P.B., Reuber, I. & Fuchs, G. (1988) Structural evolution and sequence of thrusting in the High Himalayan, Tibetan‐Tethys and Indus suture zones of Zanskar and Ladakh, western Himalaya – discussion. J. Struct. Geol., 10, 129–130.
    [Google Scholar]
  65. Kirkham, A. (1998) A Quaternary proximal foreland ramp and its continental fringe, Arabian Gulf, UAE. Geol. Soc. London Spec. Publ., 149, 15–41.
    [Google Scholar]
  66. Klootwijk, C.T., Gee, J.S., Peirce, J.W., Smith, G.M. & McFadden, P.L. (1992) An early India‐Asia contact; paleomagnetic constraints from Ninetyeast Ridge, Odp Leg 121; with Suppl. Data 92‐15. Geology, 20, 395–398.
    [Google Scholar]
  67. Kominz, M.A., Browning, J.V., Miller, K.G., Sugarman, P.J., Mizintseva, S. & Scotese, C.R. (2008) Late Cretaceous to Miocene sea‐level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis. Basin Res., 20, 211–226.
    [Google Scholar]
  68. Le Fort, P. (1989) The Himalayan orogenic segment. In: Tectonic Evolution of the Tethyan Region, Vol. 259 (Ed. by A.M.C.Sengör ), pp. 289–386. Kluwer Academic Publishers, Norwell, Massachusetts.
    [Google Scholar]
  69. Lee, H.Y., Chung, S.L., Wang, Y.B., Zhu, D.C., Yang, J.H., Song, B., Liu, D. & Wu, F.Y. (2007) Age, petrogenesis and geological significance of the Linzizong volcanic successions in the Linzhou basin, southern Tibet: evidence from Zircon U–Pb Dates and Hf isotopes. Acta Petrologica Sinica, 23, 493–500.
    [Google Scholar]
  70. Lee, H.Y., Chung, S.L., Lo, C.H., Ji, J.Q., Lee, T.Y., Qian, Q. & Zhang, Q. (2009) Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 477, 20–35.
    [Google Scholar]
  71. Leech, M.L., Singh, S., Jain, A.K., Klemperer, S.L. & Manickavasagam, R.M. (2005) The onset of India‐Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet. Sci. Lett., 234, 83–97.
    [Google Scholar]
  72. Leier, A.L., DeCelles, P.G., Kapp, P. & Ding, L. (2007a) The Takena Formation of the Lhasa terrane, southern Tibet: the record of a Late Cretaceous retroarc foreland basin. Geol. Soc. Am. Bull., 119, 31–48.
    [Google Scholar]
  73. Leier, A.L., Kapp, P., Gehrels, G.E. & DeCelles, P.G. (2007b) Detrital zircon geochronology of Carboniferous–Cretaceous strata in the Lhasa terrane, Southern Tibet. Basin Res., 19, 361–378.
    [Google Scholar]
  74. Li, X., Jenkyns, H.C., Wang, C., Hu, X., Chen, X., Wei, Y., Huang, Y. & Cui, J. (2006) Upper Cretaceous carbon‐ and oxygen‐isotope stratigraphy of hemipelagic carbonate facies from southern Tibet, China. J. Geol. Soc. London, 163, 375–382.
    [Google Scholar]
  75. Liebke, U., Appel, E., Ding, L., Neumann, U., Antolin, B. & Xu, Q.A. (2010) Position of the Lhasa terrane prior to India‐Asia collision derived from palaeomagnetic inclinations of 53 Ma old dykes of the Linzhou basin: constraints on the age of collision and post‐collisional shortening within the Tibetan plateau. Geophys. J. Int., 182, 1199–1215.
    [Google Scholar]
  76. Lippert, P.C., Zhao, X.X., Coe, R.S. & Lo, C.H. (2011) Palaeomagnetism and Ar‐40/Ar‐39 geochronology of upper palaeogene volcanic rocks from central Tibet: implications for the central Asia inclination anomaly, the palaeolatitude of Tibet and Post‐50 Ma shortening within Asia. Geophys. J. Int., 184, 131–161.
    [Google Scholar]
  77. Liu, J.B. & Aitchison, J.C. (2002) Upper Paleocene radiolarians from the Yamdrok melange, South Xizang (Tibet), China. Micropaleontology, 48, 145–154.
    [Google Scholar]
  78. Liu, G. & Einsele, G. (1994) Sedimentary history of the Tethyan basin in the Tibetan Himalayas. Geol. Rundsch., 83, 32–61.
    [Google Scholar]
  79. Liu, G. & Einsele, G. (1996) Various types of olistostromes in a closing ocean basin, Tethyan Himalaya (Cretaceous, Tibet). Sed. Geol., 104, 203–226.
    [Google Scholar]
  80. Liu, Z.F., Wang, C.S. & Yi, H.S. (2001) Evolution and mass accumulation of the Cenozoic Hoh Xil basin, northern Tibet. J. Sed. Res., 71, 971–984.
    [Google Scholar]
  81. McDermid, I.R.C., Aitchison, J.C., Davis, A.M., Harrison, T.M. & Grove, M. (2002) The Zedong terrane: a Late Jurassic intra‐oceanic magmatic arc within the Yarlung‐Tsangpo Suture zone, southeastern Tibet. Chem. Geol., 187, 267–277.
    [Google Scholar]
  82. Mellere, D. (1993) Thrust‐generated, back‐fill stacking of alluvial fan sequences, South‐Central Pyrenees, Spain (La Pobla De Segur Conglomerates). In: Tectonic Controls and Signatures in Sedimentary Successions (Ed. by L.E.Frostick & R.J.Steel ) Spec. publ. Int. Assoc. Sedimentol., 20, 259–276.
    [Google Scholar]
  83. Miall, A.D. (1995) Collision‐related foreland basins. In: Tectonics of Sedimentary Basins (Ed. by C.J.Busby & R.V.Ingersoll ), pp. 393–424. Blackwell Science, Oxford, UK.
    [Google Scholar]
  84. Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie‐Blick, N. & Pekar, S.F. (2005) The Phanerozoic record of global sea‐level change. Science, 310, 1293–1298.
    [Google Scholar]
  85. Mo, X., Hou, Z., Niu, Y., Dong, G., Qu, X., Zhao, Z. & Yang, Z. (2007) Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96, 225–242.
    [Google Scholar]
  86. Mo, X., Niu, Y., Dong, G., Zhao, Z., Hou, Z., Zhou, S. & Ke, S. (2008) Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chem. Geol., 250, 49–67.
    [Google Scholar]
  87. Mu, A., Wen, S., Wang, Y. & Chang, P. (1973) Stratigraphy of the Mount Jolmo Lungma region in southern Tibet, China. Sci. Sinica, 16, 96–111.
    [Google Scholar]
  88. Najman, Y., Carter, A., Oliver, G. & Garzanti, E. (2005) Provenance of Eocene foreland basin sediments, Nepal: constraints to the timing and diachroneity of early himalayan orogenesis. Geology, 33, 309–312.
    [Google Scholar]
  89. Najman, Y., Appel, E., Boudagher‐Fadel, M., Bown, P., Carter, A., Garzanti, E., Godin, L., Han, J., Liebke, U., Oliver, G., Parrish, R. & Vezzoli, G. (2010) Timing of India‐Asia collision: geological, biostratigraphic, and palaeomagnetic constraints. J. Geophys. Res., 115, B12416. doi:10.1029/2010JB007673.
    [Google Scholar]
  90. Pan, G.T., Mo, X.X., Hou, Z.Q., Zhu, D.C., Wang, L.Q., Li, G.M., Zhao, Z.D., Geng, Q.R. & Liao, Z.L. (2006) Spatial‐temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22, 521–533.
    [Google Scholar]
  91. Patzelt, A., Li, H., Junda, W. & E., A. (1996) Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet: evidence for the extent of the northern margin of India prior to the collision with Eurasia. Tectonophysics, 259, 259–284.
    [Google Scholar]
  92. Pigram, C.J., Davies, P.J., Feary, D.A. & Symonds, P.A. (1989) Tectonic controls on carbonate platform evolution in southern Papua New Guinea: passive margin to foreland basin. Geology, 17, 199–202.
    [Google Scholar]
  93. Proust, J.N., Chuvashov, B.I., Vennin, E. & Boisseau, T. (1998) Carbonate platform drowning in a foreland setting; the Mid‐Carboniferous platform in western Urals (Russia). J. Sed. Res., 68, 1175–1188.
    [Google Scholar]
  94. Puigdefàbregas, C. & Souquet, P. (1986) Tecto‐sedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics, 129, 173–203.
    [Google Scholar]
  95. Rainbird, R.H. & Ernst, R.E. (2001) The sedimentary record of mantle‐plume uplift. In: Mantle Plumes: Their Identification through Time (Ed. by R.E.Ernst & K.L.Buchan ), Vol. 352, pp. 227–246. Geological Society of America Speical Paper, Boulder, Colorado.
  96. Ratschbacher, L., Frisch, W., Liu, G. & Chen, C. (1994) Distributed deformation in southern and western Tibet during and after the India‐Asia collision. J. Geophys. Res., 99, 19917–19945.
    [Google Scholar]
  97. Rowley, D.B. (1996) Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet. Sci. Lett., 145, 1–13.
    [Google Scholar]
  98. Rowley, D.B. (1998) Minimum age of initiation of collision between India and Asia North of Everest based on the subsidence history of the Zhepure Mountain section. J. Geol., 106, 229–235.
    [Google Scholar]
  99. Searle, M.P., Windley, B.F., Coward, M.P., Cooper, D.J.W., Rex, A.J., Rex, D., Tingdong, L., Xuchang, X., Jan, M.Q. & Thakur, V.C. (1987) The closing of Tethys and the tectonics of the Himalaya. Geol. Soc. Am. Bull., 98, 678–701.
    [Google Scholar]
  100. Searle, M., Corfield, R.I., Stephenson, B. & McCarron, J. (1997) Structure of the North Indian continental margin in the Ladakh‐Zanskar Himalayas: implications for the timing of obduction of the Spontang ophiolite, India‐Asia collision and deformation events in the Himalaya. Geol. Mag., 134, 297–316.
    [Google Scholar]
  101. Sinclair, H.D. (1997a) Tectonostratigraphic model for Underfilled peripheral foreland basins: an Alpine perspective. Geol. Soc. Am. Bull., 109, 324–346.
    [Google Scholar]
  102. Sinclair, H.D. (1997b) Flysch to molasse transition in peripheral foreland basins: the role of the passive margin versus slab breakoff. Geology, 25, 1123–1126.
    [Google Scholar]
  103. Soederlund, U., Patchett, P.J., Vervoort, J.D. & Isachsen, C.E. (2004) The <Sup>176</Sup> Lu decay constant determined by Lu‐Hf and U‐Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett., 219, 311–324.
    [Google Scholar]
  104. Spurlin, M.S., Yin, A., Horton, B.K., Zhou, J. & Wang, J. (2005) Structural evolution of the Yushu‐Nangqian region and its relationship to syncollisional igneous activity east‐central Tibet. Geol. Soc. Am. Bull., 117, 1293–1317.
    [Google Scholar]
  105. Sun, Z.M., Jiang, W., Li, H.B., Pei, J.L. & Zhu, Z.M. (2010) New paleomagnetic results of Paleocene volcanic rocks from the Lhasa block: tectonic implications for the collision of India and Asia. Tectonophysics, 490, 257–266.
    [Google Scholar]
  106. Tong, Y., Zheng, L., Yang, T., Shi, L. & Sun, Z. (2008) Early Paleocene paleomagnetic results from southern Tibet, and tectonic implications. Int. Geol. Rev., 50, 546–562.
    [Google Scholar]
  107. Turcotte, D., Schubert, G. (1982) Geodynamics: Applications of Continuum Mechanics to Geological Problens. John Wiley, New York.
    [Google Scholar]
  108. Volkmer, J.E., Kapp, P., Guynn, J.H. & Lai, Q.Z. (2007) Cretaceous‐Tertiary structural evolution of the North central Lhasa Terrane, Tibet. Tectonics, 26, TC6007, doi:10.1029/2005TC001832.
    [Google Scholar]
  109. Wan, X.Q., Jansa, L.F. & Sarti, M. (2002) Cretaceous and Paleogene boundary strata in southern Tibet and their implication for the India‐Eurasia collision. Lethaia, 35, 131–146.
    [Google Scholar]
  110. Wang, C., Liu, Z., Li, X. & Wan, X. (1999) Xigaze Forearc Basin and Yarlung‐Zangbo Suture Zone, Tibet. Geological Publishing House, Beijing.
    [Google Scholar]
  111. Wang, C.S., Li, X.H., Hu, X.M. & Jansa, L.F. (2002a) Latest marine horizon North of Qomolangma (Mt Everest): implications for closure of Tethys seaway and collision tectonics. Terra Nova, 14, 114–120.
    [Google Scholar]
  112. Wang, C.S., Liu, Z.F., Yi, H.S., Liu, S. & Zhao, X.X. (2002b) Tertiary crustal shortenings and peneplanation in the Hoh Xil region: implications for the tectonic history of the northern Tibetan Plateau. J. Asian Earth Sci., 20, 211–223.
    [Google Scholar]
  113. Wang, J., Hu, X., Jansa, L. & Huang, Z. (2011) Provenance of the Upper Cretaceous‐Eocene deep‐water sandstones in Sangdanlin, southern Tibet: constraints on the timing of initial India‐Asia Collision. J. Geol., 119, 293–309.
    [Google Scholar]
  114. Wen, D.‐R., Liu, D., Chung, S.‐L., Chu, M.‐F., Ji, J., Zhang, Q., Song, B., Lee, T.‐Y., Yeh, M.‐W. & Lo, C.‐H. (2008) Zircon Shrimp U‐Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chem. Geol., 252, 191–201.
    [Google Scholar]
  115. Wendler, I., Wendler, J., Gr fe, K.U., Lehmann, J. & Willems, H. (2009) Turonian to Santonian carbon isotope data from the Tethys Himalaya, southern Tibet. Cretaceous Res., 30, 961–979.
    [Google Scholar]
  116. Willems, H. (1993) Sedimentary history of the Tethys Himalaya continental margin in the South Tibet (Gamba, Tingri) during upper Cretaceous and Paleogene (Xizang Autonomous Region, Pr China). In: Geoscietific Investigations in the Tethyan Himalayas(Ed. by H.Willems ) Berichte aus dem Fachbereich Geowissenschaften, der Universit t Bremen, 38, 49–181.
    [Google Scholar]
  117. Willems, H. & Zhang, B. (1993) Cretaceous and lower Tertiary Sediments of the Tibetan Tethys Himalaya in the area of Tingri (South Tibet, Pr China). In: Geoscientific Investigations in the Tethyan Himalayas(Ed. by H.Willems ), Ber. Fachbereich Geowiss. Univ. Bremen, 38, 29–47.
    [Google Scholar]
  118. Willems, H., Zhou, Z., Zhang, B. & Grafe, K.U. (1996) Stratigraphy of the Upper Cretaceous and lower Tertiary Strata in the Tethyan Himalayas of Tibet (Tingri Area, China). Geol. Rundsch., 85, 723–754.
    [Google Scholar]
  119. Wu, F.Y., Clift, P.D. & Yang, J.H. (2007) Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India. Tectonics, 26, TC2014, doi: 10.1029/2006TC002051.
    [Google Scholar]
  120. Wu, F.Y., Ji, W.Q., Liu, C.Z. & Chung, S.L. (2010) Detrital Zircon U‐Pb and Hf isotopic data from the Xigaze fore‐arc basin: constraints on Transhimalayan magmatic evolution in southern Tibet. Chem. Geol., 271, 13–25.
    [Google Scholar]
  121. Wu, C., Shi, Y.K. & Hu, X. (2011) The disconformity in the Late Cretaceous Strata at Tingri (Southern Tibet) and its age constrained constrained by planktonic foraminifera. Acta Micropalaeontologica Sinica, 28, 381–401.
    [Google Scholar]
  122. Yi, Z.Y., Huang, B.C., Chen, J.C., Chen, L.W. & Wang, H.L. (2011) Paleomagnetism of early Paleogene marine sediments in southern Tibet, China: Implications to onset of the India–Asia collision and size of Greater India. Earth Planet. Sci. Lett., 309, 153–165.
    [Google Scholar]
  123. Yin, A. & Harrison, T.M. (2000) Geologic evolution of the Himalayan‐Tibetan orogen. Annu. Rev. Earth Planet Sci., 28, 211–280.
    [Google Scholar]
  124. Yin, A., Dang, Y.Q., Wang, L.C., Jiang, W.M., Zhou, S.P., Chen, X.H., Gehrels, G.E. & McRivette, M.W. (2008) Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): the southern Qilian Shan‐Nan Shan thrust belt and northern Qaidam basin. Geol. Soc. Am. Bull., 120, 813–846.
    [Google Scholar]
  125. Zhang, H.F., Xu, W.C., Guo, J.Q., Zong, K.Q., Cai, H.M. & Yuan, H.L. (2007a) Zircon U–Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese belt, Tibet: evidence for early Jurassic subduction of Neo‐Tethyan oceanic slab. Acta Petrol. Acta, 23, 1347–1353.
    [Google Scholar]
  126. Zhang, H.F., Xu, W.C., Guo, J.Q., Zong, K.Q., Cai, H.M. & Yuan, H.L. (2007b) Indosinian orogenesis of the Gangdese terrane: evidences from zircon U–Pb dating and petrogenesis of granitoids. Earth Sciences – J. China Univ. Geosci., 32, 155–166.
    [Google Scholar]
  127. Zhu, T., Zou, G. & Zhou, M. (2002) 1:250,000 Geological Map of the Nyalam Area, Tibet. Tibet Chengdu Institute of Geology and Mineral Resources, Chengdu.
    [Google Scholar]
  128. Zhu, B., Kidd, W.S.F., Rowley, D.B., Currie, B.S. & Shafique, N. (2005) Age of initiation of the India‐Asia collision in the east‐central Himalaya. J. Geol., 113, 265–285.
    [Google Scholar]
  129. Zhu, D.C., Pan, G.T., Chung, S.L., Liao, Z.L., Wang, L.Q. & Li, G.M. (2008) Shrimp zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, South Tibet. Int. Geol. Rev., 50, 442–471.
    [Google Scholar]
  130. Zhu, D.C., Chung, S.L., Mo, X.X., Zhao, Z.D., Niu, Y., Song, B. & Yang, Y.H. (2009a) The 132 Ma Comei‐Bunbury large igneous province: remnants identified in present‐day southeastern Tibet and southwestern Australia. Geology, 37, 583–586.
    [Google Scholar]
  131. Zhu, D.C., Mo, X.X., Niu, Y., Zhao, Z.D., Wang, L.Q., Liu, Y.S. & Wu, F.Y. (2009b) Geochemical investigation of early cretaceous igneous rocks along an east‐west traverse throughout the central Lhasa Terrane, Tibet. Chem. Geol., 268, 298–312.
    [Google Scholar]
  132. Zhu, D.C., Zhao, Z.D., Niu, Y., Mo, X.X., Chung, S.L., Hou, Z.Q., Wang, L.Q. & Wu, F.Y. (2011a) The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett., 301, 241–255.
    [Google Scholar]
  133. Zhu, D.‐C., Zhao, Z.‐D., Niu, Y., Dilek, Y. & Mo, X.‐X. (2011b) Lhasa terrane in southern Tibet came from Australia. Geology, 39, 727–730.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2012.00543.x
Loading
/content/journals/10.1111/j.1365-2117.2012.00543.x
Loading

Data & Media loading...

Supplements

Characteristic microfacies from the Qumiba B section, Zhepure Mountain, south Tibet. (a) MF‐Q1, Floatstone with nummulitids mainly represented by and . Sample 09QMB3‐3. (b) MF‐Q2, Floatstone with alveolinids and small benthic foraminifera (mainly rotaliids and miliolids). Sample 09QMB3‐5. (c) MF‐Q3 Floatstone with and . Sample 09QMB50‐8. (d) MF‐Q4 Floatstone with and . Sample 09QMB5‐12; MF‐Q5 Floatstone (e, sample 09QMB5‐14) or rudstone (f, sample 09QMB6‐4) with and and minor . (g) Oolitic limestones, sample 06QMB04. (h) shell‐rich bioclastic limestones, sample 06QMB05 in the middle of the Enba Formation. Both ooids and mixed bioclastic debris are reworked with terrigenous materials. Abbreviation: Alveo. – Assi. – ; Disco. – Num. – ; mil. – miliolids; Rani. – ; orbi. – .

PDF

Concordia diagrams for detrital zircon U‐Pb ages used in spectra plots.

PDF

Planktonic foraminifera distribution from the Gelamu section, Zhepure Mountain (from Wu ., 2011).

PDF

Microfacies of the Zongpu Formation in the Zhepure Mountain, southern Tibet

Analysed detrital zircon U‐Pb age data from the Zhepure Mountain, southern Tibet

Analysed detrital zircon Hf isotope data from the Zhepure Mountain, southern Tibet

Published U‐Pb age data of intrusive and volcanic rocks in the Lhasa terrane

Published Hf isotopic data from dated zircons in the southern Lhasa terrane, central Lhasa terrane and Tethyan Himalaya terrane

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error