1887
Volume 24, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

Sea‐level changes provide an important control on the interplay between accommodation space and sediment supply, in particular, for shallow‐water basins where the available space is limited. Sediment exchange between connected basins separated by a subaqueous sill (bathymetric threshold) is still not well understood. When sea‐level falls below the bathymetric level of this separating sill, the shallow‐water basin evolution is controlled by its erosion and rapid fill. Once this marginal basin is filled, the sedimentary depocenter shifts to the open marine basin (outward shift). With new accommodation space created during the subsequent sea‐level rise, sediment depocenter shifts backwards to the marginal basin (inward shift). This new conceptual model is tested here in the context of Late Miocene to Quaternary evolution of the open connection between Dacian and Black Sea basins. By the means of seismic sequence stratigraphic analysis of the Miocene‐Pliocene evolution of this Eastern Paratethys domain, this case study demonstrates these shifts in sedimentary depocenter between basins. An outward shift occurs with a delay that corresponds to the time required to fill the remaining accommodation space in the Dacian Basin below the sill that separates it from the Black Sea. This study provides novel insight on the amplitude and sedimentary geometry of the Messinian Salinity Crisis (MSC) event in the Black Sea. A large (1.3–1.7 km) sea‐level drop is demonstrated by quantifying coeval sedimentation patterns that change to mass‐flows and turbiditic deposits in the deep‐sea part of this main sink. The post‐MSC sediment routing continued into the present‐day pattern of Black Sea rivers discharge.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2012.00541.x
2012-02-02
2024-04-19
Loading full text...

Full text loading...

References

  1. Abbreu, V.S. & Haddad, G.A. (1998) Glacioeustatic Fluctuations: The Mechanism Linking Stable Isotope Events and Sequence Stratigraphy from the Early Oligocene to Middle Miocene. In: Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (Ed. by P.‐C.de Graciansky , J.Hardenbol , T.Jacquin & P.R.Vail ), 245–259. SEPM S.P. 60, Tulsa, OK.
    [Google Scholar]
  2. Aksu, A.E., Hiscott, R.N., Yasar, D., Isler, F.I. & Marsh, S. (2002) Seismic stratigraphy of Late Quaternary deposits from the Southwestern Black Sea Shelf: evidence for non‐catastrophic variations in sea‐level during the last ~10000 Yr. Mar. Geol., 190, 61–94.
    [Google Scholar]
  3. Algan, O., Gokasan, E., Gazioglu, C., Yucel, Z.Y., Alpar, B., Guneysu, C., Kirci, E., Demirel, S., Sari, E. & Ongan, D. (2002) A high‐resolution seismic study in Sakarya Delta and Submarine Canyon, Southern Black Sea Shelf. Cont. Shelf Res., 22, 1511–1527.
    [Google Scholar]
  4. Angevine, C.L., Heller, P.L. & Paola, C. (1990) Quantitative sedimentary basin modelling. AAPG Continuing Education Course Note Series no. 32, AAPG, 133 pp.
  5. Bache, F., Olivet, J.L., Gorini, C., Rabineau, M., Baztan, J., Aslanian, D. & Suc, J.P. (2009) Messinian erosional and salinity crises: view from the Provence Basin (Gulf of Lions, Western Mediterranean). Earth. Planet. Sci. Lett., 286, 139–157.
    [Google Scholar]
  6. Bega, Z. & Ionescu, G. (2009) Neogene structural styles of the Nw Black Sea Region, Offshore Romania. Lead. Edge, 28, 1082–1089.
    [Google Scholar]
  7. Berné, S. & Gorini, C. (2005) The Gulf of Lions: an overview of recent studies within the French ‘Margins’ Programme. Mar. Petrol. Geol., 22, 691–693.
    [Google Scholar]
  8. Catuneanu, O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, P.G., Fielding, C.R., Fisher, W.L., Galloway, W.E., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.S.C., Macurda, B., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E. & Winker, C. (2009) Towards the standardization of sequence stratigraphy. Earth‐Sci. Rev., 92, 1–33.
    [Google Scholar]
  9. Clauzon, G., Aguilar, J.P. & Michaux, J. (1987) Le Bassin Pliocène Du Roussillon (Pyrénées‐Orientales, France): Exemple D'évolution Géodynamique D'une Ria Mediterranéenne Consecutive À La Crise De Salinité Messiniene. C.R. Acad. Sci. Paris, 304, 585–590.
    [Google Scholar]
  10. Clauzon, G., Suc, J.‐P., Gautier, F., Berger, A. & Loutre, M.‐F. (1996) Alternate interpretation of the Messinian salinity crisis: controversy resolved?Geology, 24, 363–366.
    [Google Scholar]
  11. Clauzon, G., Suc, J.‐P., Popescu, S.‐M., Marunteanu, M., Rubino, J.‐L., Marinescu, F. & Melinte, M.C. (2005) Influence of Mediterranean sea‐level changes on the Dacic Basin (Eastern Paratethys) during the Late Neogene: the Mediterranean Lagomare Facies deciphered. Basin Res., 17, 437–462.
    [Google Scholar]
  12. Cloetingh, S., Spadini, G., Van Wees, J.D. & Beekman, F. (2003) Thermo‐mechanical modelling of Black Sea Basin (de)formation. Sed. Geol., 156, 169–184.
    [Google Scholar]
  13. Csato, I., Kendall, C.G.S.C. & Moore, P.D. (2007) The Messinian Problem in the Pannonian Basin, Eastern Hungary ‐ insights from stratigraphic simulations. Sed. Geol., 201, 111–140.
    [Google Scholar]
  14. Dinu, C., Wong, H.K., Tambrea, D. & Matenco, L. (2005) Stratigraphic and structural characteristics of the Romanian Black Sea Shelf. Tectonophysics, 410, 417–435.
    [Google Scholar]
  15. Finetti, I., Bricchi, G., Del Ben, A., Pipan, M. & Xuan, Z. (1988) Geophysical study of the Black Sea. Bollettino di Geofisica Teorica ed Applicata, 197–324.
    [Google Scholar]
  16. Frey‐Martinez, J., Cartwright, J. & James, D. (2006) Frontally confined versus frontally emergent submarine landslides: a 3d seismic characterisation. Mar. Petrol. Geol., 23, 585–604.
    [Google Scholar]
  17. Galloway, W.E. (1989) Calstic Facies Models, Depositional Systems, Sequences and Correlation: A Sedimentologists View of the Dimensional and Temporal Resolution of Lithostratigraphy. In: Quantitative Dynamic Stratigraphy (Ed. by T.A.Cross ), pp. 113–126. Prentice Hall, New Jersey.
    [Google Scholar]
  18. Garcia‐Castellanos, D. (2006) Long‐term evolution of tectonic lakes: climatic controls on the development of internally drained basins. Geol. Soc. A Spec. Pap., 398, 283–294.
    [Google Scholar]
  19. Garcia‐Castellanos, D., Verges, J., Gaspar‐Escribano, J. & Cloetingh, S. (2003) Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (Ne Iberia). J. Geophys. Res., 108, 23–47.
    [Google Scholar]
  20. Garcia‐Castellanos, D., Estrada, F., Jimenez‐Munt, I., Gorini, C., Fernàndez, M., Vergas, J. & De Vicente, R. (2009) Catastrophic flood of the Mediterranean after the Messinian Salinity Crisis. Nature, 462, 778–781.
    [Google Scholar]
  21. Georgescu, M.D. (2003) Microfaunal abundance fluctuations in the Western Black Sea (Romanian Offshore, Cretaceous to Pliocene). In: Micropaleontologic Proxies for Sea‐Level Change and Stratigraphic Discontinuities. (Ed. by SEPM), 75, 301–315.
    [Google Scholar]
  22. Gillet, H. (2004) La Stratigraphie Tertiare Et La Surface D'erosion Messinienne Sur Les Marges Occidentales De La Mer Noire: Stratigraphie Sismique Haute Resolution. PhD Thesis, L'Universite de Bretagne Occidentale, Brest.
  23. Gillet, H., Lericolais, G. & Rehault, J.‐P. (2007) Messinian event in the Black Sea: evidence of a Messinian Erosional Surface. Mar. Geol., 244, 142–165.
    [Google Scholar]
  24. Giosan, L., Donnelly, J.P., Constantinescu, S., Filip, F., Ovejanu, I., Vespremeanu‐Stroe, A., Vespremeanu, E. & Duller, G.A.T. (2006) Young Danube Delta documents stable Black Sea Level since the Middle Holocene: morphodynamic, paleogeographic, and archaeological implications. Geology, 34, 757–760.
    [Google Scholar]
  25. Gorini, C., Lofi, J., Duvail, C., Dos Reis, A.T., Guennoc, P., Lestrat, P. & Mauffret, A. (2005) The Late Messinian Salinity Crisis and Late Miocene Tectonism: interaction and consequences on the physiography and post‐rift evolution of the Gulf of Lions Margin. Mar. Petrol. Geol., 22, 695–712.
    [Google Scholar]
  26. Görür, N. (1988) Timing of opening of the Black Sea Basin. Tectonophysics, 147, 247–262.
    [Google Scholar]
  27. Gozhik, P.F., Maslun, N.V., Plotnikova, L.F., Ivanik, M.M., Yakushin, L.M. & Ischenko, I.I. (2006) Stratigraphy of the Mesozoic‐Cenozoic Sediments of North‐Western Black Sea Shelf (in Ukrainian). Ukrainian National Academy of Sciences, Institute of Geological Sciences, Kiev.
    [Google Scholar]
  28. Higgins, S., Davies, R.J. & Clarke, B. (2007) Antithetic fault linkages in a deep water fold and thrust belt. J. Struct. Geol., 29, 1900–1914.
    [Google Scholar]
  29. Hilgen, F., Kuiper, K., Krijgsman, W., Snel, E. & van der Laan, E. (2007) Astronomical tuning as the basis for high resolution chronostratigraphy: the intricate history of the Messinian Salinity Crisis. Stratigraphy, 4, 231–238.
    [Google Scholar]
  30. Hiscott, R.N., Aksu, A.E., Mudie, P.J., Marret, F., Abrajano, T., Kaminski, M.A., Evans, J., Çakiroglu, A.I. & Yasar, D. (2007) A gradual drowning of the Southwestern Black Sea Shelf: evidence for a progressive rather than abrupt holocene reconnection with the Eastern Mediterranean Sea through the Marmara Sea Gateway. Quatern. Int., 167, (168), 19–34.
    [Google Scholar]
  31. Hsu, K.J. & Giovanoli, F. (1979) Messinian event in the Black Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol., 29, 75–93.
    [Google Scholar]
  32. Ilgar, A. & Nemec, W. (2005) Early Miocene Lacustrine deposits and sequence stratigraphy of the Ermenek Basin, Central Taurides, Turkey. Sed. Geol., 173, 233–275.
    [Google Scholar]
  33. Ivanov, Z. (1988) Apercu General Sur L'evolution Geologique Et Structurale Du Massif Des Rhodopes Dans Le Cadre Des Balkanides. Bull. Soc. Geol. Fr.., IV, 227–240.
    [Google Scholar]
  34. Jermannaud, P., Rouby, D., Robin, C., Nalpas, T., Guillocheau, F. & Raillard, S. (2010) Plio‐Pleistocene sequence stratigraphic architecture of the Eastern Niger Delta: a record of eustasy and aridification of Africa. Mar. Petrol. Geol., 27, 810–821.
    [Google Scholar]
  35. Jipa, D.C. & Olariu, C. (2009) Dacian Basin: Depositional Architecture and Sedimentary History of a Paratethys Sea. National Institute of Marine Geology and Geo‐ecology, Bucharest.
    [Google Scholar]
  36. Johannessen, E.P. & Steel, R.J. (2005) Shelf‐margin clinoforms and prediction of deepwater sands. Basin Res., 17, 521–550.
    [Google Scholar]
  37. Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J. & Wilson, D.S. (1999) Chronology, causes and progression of the Messinian Salinity Crisis. Nature, 400, 652–655.
    [Google Scholar]
  38. Krijgsman, W., Stoica, M., Vasiliev, I. & Popov, V.V. (2010) Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis. Earth. Planet. Sci. Lett., 290, 183–191.
    [Google Scholar]
  39. Leever, K.A., Matenco, L., Bertotti, G., Cloetingh, S. & Drijkoningen, G.G. (2006) Late Orogenic vertical movements in the Carpathian Bend Zone ‐ seismic constraints on the transition zone from Orogen to Foredeep. Basin Res., 18, 521–545.
    [Google Scholar]
  40. Leever, K.A., Matenco, L., Garcia‐Castellanos, D. & Cloetingh, S.A.P.L. (2010a) The evolution of the Danube Gateway between Central and Eastern Paratethys (Se Europe): insight from numerical modelling of the causes and effects of connectivity between basins and its expression in the sedimentary record. Tectonophysics, 502(12), 175–195.
    [Google Scholar]
  41. Leever, K.A., Matenco, L., Rabagia, T., Cloetingh, S., Krijgsman, W. & Stoica, M. (2010b) Messinian sea level fall in the Dacic Basin (Eastern Paratethys): palaeogeographical implications from seismic sequence stratigraphy. Terra Nova, 22, 12–17.
    [Google Scholar]
  42. Lericolais, G., Bulois, C., Gillet, H. & Guichard, F. (2009) High frequency sea level fluctuations recorded in the Black Sea since the Lgm. Global Planet. Change, 66, 65–75.
    [Google Scholar]
  43. Lericolais, G., Guichard, F., Morigi, C., Minereau, A., Popescu, I. & Radan, S. (2010) A post younger Dryas Black Sea regression identified from sequence stratigraphy correlated to core analysis and dating. Quatern. Int., 225 (2), 199–209.
    [Google Scholar]
  44. Lofi, J., Gorini, C., Berne, S., Clauzon, G., Dos Reis, A.T., Ryan, W.B.F. & Steckler, M.S. (2005) Erosional processes and paleo‐environmental changes in the Western Gulf of Lions (Sw France) during the Messinian Salinity Crisis. Mar. Geol., 217, 1–30.
    [Google Scholar]
  45. Magyar, I. & Sztanó, O. (2008) Is there a Messinian Unconformity in the Central Paratethys?Stratigraphy, 5, 245–255.
    [Google Scholar]
  46. Martins‐Neto, M.A. & Catuneanu, O. (2010) Rift sequence stratigraphy. Mar. Petrol. Geol., 27, 247–253.
    [Google Scholar]
  47. Matenco, L., Bertotti, G., Leever, K., Cloetingh, S., Schmid, S., Tărăpoancă, M. & Dinu, C. (2007) Large‐scale deformation in a locked collisional boundary: interplay between subsidence and uplift, intraplate stress, and inherited lithospheric structure in the late stage of the Se Carpathians Evolution. Tectonics, 26, TC4011.
    [Google Scholar]
  48. Matenco, L., Krézsek, C., Merten, S., Schmid, S., Cloetingh, S. & Andriessen, P. (2010) Characteristics of collisional orogens with low topographic build‐up: an example from the Carpathians. Terra Nova, 22, 155–165.
    [Google Scholar]
  49. Matoshko, A., Gozhik, P. & Semenenko, V. (2009) Late Cenozoic Fluvial Development within the Sea of Azov and Black Sea Coastal Plains. Global Planet. Change, 68, 270–287.
    [Google Scholar]
  50. Meijer, P.T. & Krijgsman, W. (2005) A quantitative analysis of the desiccation and re‐filling of the Mediterranean during the Messinian Salinity Crisis. Earth. Planet. Sci. Lett., 240, 510–520.
    [Google Scholar]
  51. Meredith, D.J. & Egan, S.S. (2002) The geological and geodynamic evolution of the Eastern Black Sea Basin: insights from 2‐D and 3‐D tectonic modelling. Tectonophysics, 350, 157–179.
    [Google Scholar]
  52. Merten, S., Matenco, L., Foeken, J.P.T., Stuart, F.M. & Andriessen, P.A.M. (2010) From Nappe Stacking to out‐of‐sequence postcollisional deformations: Cretaceous to Quaternary exhumation history of the Se Carpathians assessed by low‐temperature thermochronology. Tectonics, 29, TC3013.
    [Google Scholar]
  53. Muto, T., Steel, R.J. & Swenson, J.B. (2007) Autostratigraphy: a framework norm for genetic stratigraphy. J. Sed. Res., 77, 2–12.
    [Google Scholar]
  54. Nikishin, A.M., Korotaev, M.V., Ershov, A.V. & Brunet, M.‐F. (2003) The Black Sea Basin: tectonic history and Neogene‐Quaternary rapid subsidence modelling. Sed. Geol., 156, 149–168.
    [Google Scholar]
  55. Nikishin, A.M., Ershov, A.V. & Nikishin, V.A. (2010) Geological history of Western Caucasus and adjacent foredeeps based on analysis of the regional balanced section. Doklady Earth Sciences, 430, 155–157.
    [Google Scholar]
  56. Olariu, C. & Steel, R.J. (2009) Influence of point‐source sediment‐supply on modern shelf‐slope morphology: implications for interpretation of ancient shelf margins. Basin Res., 21, 484–501.
    [Google Scholar]
  57. Panin, N. (2003) The Danube Delta geomorphology and Holocene evolution: a synthesis. Geomorphologie: relief, processus, environnement, 4, 247–262.
    [Google Scholar]
  58. Petter, A.L. & Steel, R.J. (2006) Hyperpycnal flow variability and slope organization on an Eocene Shelf Margin, Central Basin, Spitsbergen. AAPG Bull., 90, 1451–1472.
    [Google Scholar]
  59. Popescu, I., Lericolais, G., Panin, N., Wong, H.K. & Droz, L. (2001) Late Quaternary Channel avulsions on the Danube Deep‐Sea Fan, Black Sea. Mar. Geol., 179, 25–37.
    [Google Scholar]
  60. Popov, S.V., Shcherba, I.G., Ilyina, L.B., Nevesskaya, L.A., Paramonova, N.P., Khondkarian, S.O. & Magyar, I. (2006) Late Miocene to Pliocene Palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol., 238, 91–106.
    [Google Scholar]
  61. Posamentier, H.W. (2003) Depositional elements associated with a basin floor channel‐Levee System: case study from the Gulf of Mexico. Mar. Petrol. Geol., 20, 677–690.
    [Google Scholar]
  62. Posamentier, H.W. & Walker, R.G. (2006) Deep water turbidites and turbiditic fans. In: Facies Models Revisited (Ed. by H.W.Posamentier & R.G.Walker ), 339–527. SPEM.
    [Google Scholar]
  63. Ricou, L.E., Burg, J.P., Godfriaux, I. & Ivanov, Z. (1998) Rhodope and Vardar: the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe. Geodin. Acta, 11, 285–309.
    [Google Scholar]
  64. Rögl, F. (1996) Stratigraphic correlation of Paratethys Oligocene and Miocene. Mitt.Gesell. Geol. Bergbaustud. Österreich., 41, 65–73.
    [Google Scholar]
  65. Rögl, F. (1999) Mediteranean and Paratethys. Facts and Hypotheses of an Oligocene to Miocene Paleogeography. Geol. Carpath., 50, 339–349.
    [Google Scholar]
  66. Ross, A.D. (1978) Black Sea Stratigraphy. DSDP Leg. 42 B. W. H. O. Institution, Woods Hole Oceanographic Institution. Washington, D.C., 42, 17–27.
    [Google Scholar]
  67. Saulea, E., Popescu, I. & Sandulescu, J. (1969) Lithofacial Atlas, 1:200.000 (in Romanian and French), Geological Institute of Romania. Bucharest.
    [Google Scholar]
  68. Schlager, W. (1993) Accommodation and supply ‐ a dual control on stratigraphic sequences. Sed. Geol., 86, 111–136.
    [Google Scholar]
  69. Schrader, H.J. (1978) Quaternary throught Neogene history of the Black Sea, deduced from the paleoecology of diatoms, silicoflagellates, ebridians and chrysomonads. In: Int. Repts. DSDP (Ed. by RossD.A. & Neprochnow.Y. P. ), 42 (part 2), 789–902, U.S. Govt. Printing office, Washington.
    [Google Scholar]
  70. Senes, J. (1973) Correlation hypotheses of the Neogene Tethys and Paratethys. Giorn. Geol., 39, 271–286.
    [Google Scholar]
  71. Sinclair, H.O., Juranov, S.G., Georgiev, G., Byrne, P. & Mountney, N.P. (1997) The Balkan Thrust Wedge and Foreland Basin of Eastern Bulgaria: Structural and Stratigraphic Development. In: Regional and Petroleum Geology of the Black Sea and Surrounding Region (Ed. by A.G.Robinson ) AAPG Memoir., 68, 91–116.
    [Google Scholar]
  72. Steininger, F.F., Muller, C. & Rogl, F. (1988) Correlation of Central Paratethys, Eastern Paratethys, and Mediterranean Neogene Stages. In: The Pannonian Basin, a Study in Basin Evolution (Ed. by L.H.Royden & F.Horvath ), AAPG Memoir., 28, 79–87.
    [Google Scholar]
  73. Stephenson, R.A., Mart, Y., Okay, A., Robertson, A., Saintot, A., Stovba, S. & Khriachtchevskaia, O. (2004) Transmed Section Viii; East‐European Craton‐Crimea‐Black Sea‐Anatolia‐Cyprus‐Levant Sea‐Sinai‐Red Sea. In: The Transmed Atlas: The Mediterranean Region from Crust to Mantle (Ed. by W.Cavazza , F.Roure , W.Spakman , G.M.Stampfli & P.A.Ziegler ). Springer, Berlin.
    [Google Scholar]
  74. Stoffers, P. & Müller, G. (1979) Carbonate rocks in the Black Sea Basin: indicators for shallow water and subaerial exposure during Miocene–Pliocene time. Sed. Geol., 23, 137–147.
    [Google Scholar]
  75. Stoica, M., Lazar, I., Vasiliev, I. & Krijgsman, W. (2007) Mollusc assemblages of the Pontian and Dacian Deposits from the Topolog‐Arges, Area (Southern Carpathian Foredeep – Romania). Geobios, 40, 391–405.
    [Google Scholar]
  76. Stovba, S., Khriachtchevskaia, O. & Popadyuk, I. (2009) Hydrocarbon‐bearing areas in the Eastern Part of the Ukrainian Black Sea. Lead. Edge, 28, 1042–1045.
    [Google Scholar]
  77. Tambrea, D. (2007) Subsidence analysis and thermo‐tectonic evolution of Histria Depresion (Black Sea). Implications in Hidrocarbon Generation. PhD Thesis, University of Bucharest, Bucharest (In Romanian).
  78. Tambrea, D., Raileanu, A. & Borosi, V. (2002) Seismic Facies and Depositional Framework. In Central Romanian Black Sea Offshore. Implications for Hydrocarbon Exploration. In: Geology and Tectonics of the Romanian Black Sea Shelf and Its Hydrocarbon Potential (Ed. by C.Dinu & V.Mocanu ) BGF Special Volume no. 2, 85–100.
    [Google Scholar]
  79. Tărăpoancă, M., Bertotti, G., Matenco, L., Dinu, C. & Cloetingh, S. (2003) Architecture of the Focsani Depression: A 13 km deep basin in the Carpathians Bend Zone (Romania). Tectonics, 22/6, 1074.
    [Google Scholar]
  80. Tari, G., Davies, J., Dellmour, R., Larratt, E., Novotny, B. & Kozhuharov, E. (2009) Play types and hydrocarbon potential of the Deepwater Black Sea, Ne Bulgaria. Lead. Edge, 28, 1076–1081.
    [Google Scholar]
  81. Vail, P.R., Mitchum, R.M. & Thompson, S. (1977) Seismic Stratigraphy and Global Changes of Sea Level, Part 3: Relative Changes of Sea Level from Coastal Onlap. In: Seismic Stratigraphy‐Application to Hydrocarbon Exploration (Ed. by E.C.Pyton ) AAPG Memoir., 26, 83–97.
    [Google Scholar]
  82. Vasiliev, I., Krijgsman, W., Stoica, M. & Langereis, C.G. (2005) Mio‐Pliocene magnetostratigraphy in the Southern Carpathian Foredeep and Mediterranean–Paratethys correlations. Terra Nova, 17, 376–384.
    [Google Scholar]
  83. van Wagoner, J.C., Mitchum, R.M., Campion, K.M. & Rahmanian, V.D. (1990) Siliciclastic sequence stratigraphy in Well Logs, Cores, and Outcrops. Am. Assoc. Petrol. Geol. Explor. Ser., 7, 211–240.
    [Google Scholar]
  84. Winguth, C., Wong, H.K., Panin, N., Dinu, C., Georgescu, P., Ungureanu, G., Krugliakov, V.V. & Podshuveit, V. (2000) Upper Quaternary water level history and sedimentation in the Northwestern Black Sea. Mar. Geol., 167, 127–146.
    [Google Scholar]
  85. Wong, H.K., Panin, N., Dinu, C., Georguescu, P. & Rahn, C. (1994) Morphology and Post‐Chaudian (Late Pleistocene) evolution of the Submarine Danube Fan Complex. Terra Nova, 6, 502–511.
    [Google Scholar]
  86. Yilmaz, Y., Tuysuz, O., Yigitbas, E., Can Genc, S. & Sengor, A.M.C. (1997) Geology and Tectonic Evolution of the Pontides. In: Regional and Petroleum Geology of the Black Sea and Surrounding Region (Ed. by A.G.Robinson ) AAPG Memoir., 68, 183–226.
    [Google Scholar]
  87. Zaitlin, B.A., Dalrymple, R.W. & Boyd, R. (1994) The Stratigraphic Organization of Incised‐Valley Systems Associated with Relative Sea‐Level Change. In: Incised‐Valley Systems (Ed. by R.W.Dalrymple , R.Boyd & B.A.Zaitlin ), 45–60. Tulsa, OK. SEPM.
    [Google Scholar]
  88. Zosimovich, V.Y., Kulichenko, V.G., Molyavko, G.I. & Savron, E.B. (1975) The Ukrainian Shield (in Ukrainian). In: Stratigraphy of Ukraine (Ed. by V.G.Bondarchuk ), X, 111–117. Naukova Dumka, Kiev.
    [Google Scholar]
  89. Zubakov, V.A. (2001) History and causes of variations in the Caspian Sea Level: the Miopliocene, 7.1–1.95 million years ago. Water Resour., 28, 249–256.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2012.00541.x
Loading
/content/journals/10.1111/j.1365-2117.2012.00541.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error