1887
Volume 24, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Understanding the relationships between sedimentation, tectonics and magmatism is crucial to defining the evolution of orogens and convergent plate boundaries. Here, we consider the lithostratigraphy, clastic provenance, syndepositional deformation and volcanism of the Almagro‐El Toro basin of NW Argentina (24°30′ S, 65°50′ W), which experienced eruptive and depositional episodes between 14.3 and 6.4 Ma. Our aims were to elucidate the spatial and temporal record of the onset and style of the shortening and exhumation of the Eastern Cordillera in the frame of the Miocene evolution of the Central Andes foreland basin. The volcano‐sedimentary sequence of the Almagro‐El Toro basin consists of lower red floodplain sandstones and siltstones, medial non‐volcanogenic conglomerates with localised volcanic centres and upper volcanogenic coarse conglomerates and breccia. Coarse, gravity flow‐dominated (debris‐flow and sheet‐flow) alluvial fan systems developed proximal to the source area in the upper and medial sequence. Growing frontal and intrabasinal structures suggest that the Almagro‐El Toro portion of the foreland basin accumulated on top of the eastward‐propagating active thrust front of the Eastern Cordillera. Synorogenic deposits indicate that the shortening of the foreland deposits was occurring by 11.1 Ma, but conglomerates derived from the erosion of western sources suggest that the uplift and erosion of this portion of the Eastern Cordillera has occurred since .12.5 Ma. An unroofing reconstruction suggests that 6.5 km of rocks were exhumed. A tectono‐sedimentary model of an episodically evolving thick‐skinned foreland basin is proposed. In this frame, the NW‐trending, transtensive Calama–Olacapato–El Toro (COT) structures interacted with the orogen, influencing the deposition and deformation of synorogenic conglomerates, the location of volcanic centres and the differential tilt and exhumation of the foreland.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2012.00547.x
2012-05-17
2024-03-29
Loading full text...

Full text loading...

References

  1. Acocella, V., Vezzoli, L., Omarini, R., Matteini, M. & Mazzuoli, R. (2007) Kinematic variations across Eastern Cordillera at 24°S (Central Andes): tectonic and magmatic implications. Tectonophysics, 434, 81–92, doi: 10.1016/j.tecto.2007.02.001.
    [Google Scholar]
  2. Acocella, V., Gioncada, A., Omarini, R., Riller, U., Mazzuoli, R. & Vezzoli, L. (2011) Tectonomagmatic characteristics of the back‐arc portion of the Calama‐Olacapato‐El Toro Fault Zone, Central Andes. Tectonics, 30, TC3005, doi: 10.1029/2010TC002854.
    [Google Scholar]
  3. Allmendinger, R.W., Ramos, V., Jordan, T., Palma, M. & Isacks, B.L. (1983) Paleogeography and Andean structural geometry, Northwestern Argentina. Tectonics, 2, 1–16.
    [Google Scholar]
  4. Allmendinger, R.W., Jordan, T.E., Kay, S.M. & Isacks, B.L. (1997) The evolution of the Altiplano‐Puna Plateau of the Central Andes. Annual Rev. Earth Planet. Sci., 25, 139–174.
    [Google Scholar]
  5. Alonso, R.N. (1992) Estratigrafia del Cenozoico de la cuenca de Pastos Grandes (Puna Salteña) con énfasis en la Formación Sijes y sus boratos. Rev. Asoc. Geol. Arg., 47, 189–199.
    [Google Scholar]
  6. Alonso, R.N. (2000) El Terciario de la Puna en tiempos de la ingresión marina parananse. In: El Neógeno de Argentina (Ed. by F.G.Aceñolaza & T.Herbst ) Serie Correlación Geológica, 14, 1663–1680.
    [Google Scholar]
  7. Alonso, R.N., Carrapa, B., Coutand, I., Haschke, M., Hilley, G.E., Schoenbohm, L., Sobel, E.R., Strecker, M.R. & Trauth, M.H. (2006) Tectonics, climate, and landscape evolution of the southern Central Andes: the Argentine Puna Plateau and adjacent Regions between 22º and 28ºS lat. In: The Andes – Active Subduction Orogeny (Ed. by O.Oncken , G.Chong , G.Franz , P.Giese , H.‐J.Götze , V.A.Ramos , M.R.Strecker & P.Wigger ), pp. 265–283. Springer Verlag, Berlin, NY.
    [Google Scholar]
  8. Andriessen, P.A.M. & Reutter, K.‐J. (1994) K‐Ar and fission‐track mineral age determination of igneous rocks related to multiple magmatic arc systems along the 23°S latitude of Chile and NW Argentina. In: Tectonics of the Southern Central Andes (Ed. by K.‐J.Reutter , E.Scheuber & P.Wigger ), pp. 141–153. Springer Verlag, Berlin, NY.
    [Google Scholar]
  9. Barazangi, M. & Isacks, B.L. (1976) Spatial distribution of earthquakes and subduction of the Nazca Plate beneath South America. Geology, 4, 686–692.
    [Google Scholar]
  10. Beck, R.A., Vondra, C.F., Filkins, J.E. & Olander, J.D. (1988) Syntectonic sedimentation and Laramide basement thrusting, Cordilleran foreland; timing of deformation. In: Interaction of the Rocky Mountain foreland and the Cordilleran thrust belt (Ed. by C.J.Schmidt & W.J.Jr Perry, .) Geol. Soc. Am. Memoir, 171, 465–487.
    [Google Scholar]
  11. Blair, T.C. (1999) Sedimentology of the debris‐flow‐dominated Warm Spring Canyon alluvial fan, Death Valley, California. Sedimentology, 46, 941–965.
    [Google Scholar]
  12. Blair, T.C. & McPherson, J.G. (1994) Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sedimentary Res., 64, 450–489.
    [Google Scholar]
  13. Blasco, G., Zappettini, E.O. & Hongn, F. (1996) Hoja geológica 2566‐1, San Antonio de los Cobres, Programa Nacional de carteas Geológicas de la República Argentina. Dir. Nac. del Servicio geológico. Buenos Aires, Argentina.
  14. Bosio, P.P., Powell, J., Del Papa, C. & Hongn, F. (2009) Middle Eocene deformation–sedimentation in the Luracatao Valley: tracking the beginning of the foreland basin of northwestern Argentina. J. South Am. Earth Sci., 28, 142–154, doi: 10.1016/j.jsames.2009.06.002.
    [Google Scholar]
  15. Bossi, G.E., Georgieff, S.M., Gavriloff, I.J.C., Ibañez, L.M. & Muruaga, C.M. (2001) Cenozoic evolution of the intramontane Santa María basin, Pampean Ranges, northwestern Argentina. J. South Am. Earth Sci., 14, 725–734.
    [Google Scholar]
  16. Burbank, D.W., Puigdefabregas, C. & Muñoz, J.A. (1992) The chronology of the Eocene tectonic and stratigraphic development of the eastern Pyrenean foreland basin, northeast Spain. Geol. Soc. Am. Bull., 104, 1101–1120.
    [Google Scholar]
  17. Carrera, N. & Muñoz, J.A. (2008) Thrusting evolution in the southern Cordillera Oriental (northern Argentine Andes): constraints from growth strata. Tectonophysics, 459, 107–122.
    [Google Scholar]
  18. Carrera, N., Munoz, J.A., Sabat, F., Mon, R. & Roca, E. (2006) The role of inversion tectonics in the structure of the Cordillera Oriental (NW Argentina Andes). J. Struc. Geol., 28, 1921–1932.
    [Google Scholar]
  19. Coira, B., Kay, S.M. & Viramonte, J. (1993) Upper Cenozoic magmatic evolution of the Argentine Puna – A model for changing subduction geometry. Int. Geol. Review, 35, 677–720.
    [Google Scholar]
  20. Coutand, I., Cobbold, P.R., De Urreiztieta, M., Gautier, P., Chauvin, A., Gapais, D., Rossello, E.A. & Lopez‐Gamundi, O. (2001) Style and history of Andean deformation, Puna plateau, northwestern Argentina. Tectonics, 20, 210–234.
    [Google Scholar]
  21. Coutand, I., Carrapa, B., Deeken, A., Schmitt, A.K., Sobel, E.R. & Strecker, M.R. (2006) Propagation of orographic barriers along an active range front: insights from sandstone petrography and detrital apatite fission‐track thermochronology in the intramontane Angastaco basin, NW Argentina. Basin Res., 18, 1–26.
    [Google Scholar]
  22. Davila, F.M. & Astini, R.A. (2007) Cenozoic provenance history of synorogenic conglomerates in western Argentina (Famatina belt): implications for Central Andes foreland development. Geol. Soc. Am. Bull., 119, 609–622.
    [Google Scholar]
  23. DeCelles, P.G. & Horton, B.K. (1999) Implications of early Tertiary foreland basin development for orogenesis in the central Andes. Eos, 80, 1052.
    [Google Scholar]
  24. DeCelles, P.G. & Horton, B.K. (2003) Early to middle Tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geol. Soc. Am. Bull., 115, 58–77.
    [Google Scholar]
  25. DeCelles, P.G., Gray, M.B., Ridgway, K.D., Cole, R.B., Srivastava, P., Pequera, N. & Pivnik, D.A. (1991) Kinematic history of a foreland uplift from Paleocene synorogenic conglomerate, Beartooth Range, Wyoming and Montana. Geol. Soc. Am. Bull., 103, 1458–1475.
    [Google Scholar]
  26. DeCelles, P.G., Pile, H.T. & Coogan, J.C. (1993) Kinematic history of the Meade thrust based on provenance of the Bechler conglomerate at Red Mountain, Idaho, Sevier thrust belt. Tectonics, 12, 1436–1450.
    [Google Scholar]
  27. DeCelles, P.G., Gehrels, G.E., Quade, J., Ojha, T.P., Kapp, P.A. & Upreti, B.N. (1998) Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold‐thrust belt, western Nepal. Geol. Soc. Am. Bull., 110, 2–21.
    [Google Scholar]
  28. DeCelles, P.G., Carrapa, B. & Gehrels, G.E. (2007) Detrital zircon U‐Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina. Geology, 35, 323–326, doi: 10.1130/G23322A.1
    [Google Scholar]
  29. Deeken, A., Sobel, E.R., Coutand, I., Haschke, M., Riller, U. & Strecker, M.R. (2006) Development of the southern Eastern Cordillera, NW Argentina, constrained by apatite fission track thermochronology: from Early Cretaceous extension to middle Miocene shortening. Tectonics, 25, TC6003, doi: 10.1029/2005TC001894.
    [Google Scholar]
  30. Donato, E. (1987) Caracteristicas estructurales del sector occidental de la Puna Salteña. Bol. Information Petrolera, 12, 89–97.
    [Google Scholar]
  31. Fossen, H. & Tikoff, B. (1998) Extended models of transpression and transtension, and application to tectonic settings. In: Continental Transpressional and Transtensional Tectonics (Ed. by R.E.Holdsworth , R.A.Strachan & J.F.Dewey ) Geol. Soc. Spec. Publ., 135, 15–33.
    [Google Scholar]
  32. Galli, C.I., Hernandéz, R.M. & Reynolds, J.H. (1996) Análisis paleoambiental y ubicacíon geocronológica del Subgruppo Metán: Salta, Argentina. Bol. Information Petrolera, 12, 99–107.
    [Google Scholar]
  33. Gebhard, J.A., Giudice, A.R. & Gascon, J.O. (1974) Geologia de la comarca entre el Rio Juramento y Arroyo las Tortugas, provincias de Salta y Jujuy, Republica Argentina. Rev. Ass. Geol. Arg., 29, 359–375.
    [Google Scholar]
  34. Gioncada, A., Vezzoli, L., Mazzuoli, R., Omarini, R., Nonnotte, P. & Guillou, H. (2010) Pliocene intraplate‐type volcanism in the Andean foreland at 26°10′S, 64°40′W (NW Argentina): implications for magmatic and structural evolution of the Central Andes. Lithosphere, 2, 153–171, doi: 10.1130/L81.1.
    [Google Scholar]
  35. Graham, S.A., Tolson, R.B., DeCelles, P.G., Ingersoll, R.V., Bargar, E., Caldwell, M., Cavazza, W., Edwards, D.P., Follo, M.F., Handschy, J.W., Lemke, L., Moxon, I., Rice, R., Smith, G.A. & White, J. (1986) Provenance modelling as a technique for analysing source terrane evolution and controls of foreland sedimentation. In: Foreland Basins (Ed. by P.A.Allen & P.Homewood ) Spec. Publ. Int. Ass. Sediment., 8, 425–436.
    [Google Scholar]
  36. Grier, M.E., Salfity, J.A. & Allmendinger, R.W. (1991) Andean reactivation of the Cretaceous Salta rift, northwestern Argentina. J. South Am. Earth Sci., 4, 351–372.
    [Google Scholar]
  37. Hain, M.P., Strecker, M.R., Bookhagen, B., Alonso, R.N., Pingel, H. & Schmitt, A.K. (2011) Neogene to Quaternary broken foreland formation and sedimentation dynamics in the Andes of NW Argentina (25°S). Tectonics, 30, TC2006, doi: 10.1029/2010TC002703.
    [Google Scholar]
  38. Hampton, B.A. & Horton, B.K. (2007) Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia. Sedimentology, 54, 1121–1147.
    [Google Scholar]
  39. Hardy, S. & Poblet, J. (1994) Geometric and numerical model of progressive limb rotation in detachment folds. Geology, 22, 371–374.
    [Google Scholar]
  40. Hendrix, M.S., Graham, S.A., Carroll, A.R., Sobel, E.R., Mcknight, C.L., Schulein, B.J. & Wang, Z. (1992) Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China. Geol. Soc. Am. Bull., 104, 53–79.
    [Google Scholar]
  41. Hernandéz, R.M., Galli, C.I. & Reynolds, J.H. (1999) Estratigrafia del Terciario en el Noroeste Argentino. In: Geología del Noroeste Argentino (Ed. by G.Gonzalez Bonorino , R.Omarini & G.Viramonte ) Relatorio XIV Congreso Geológico Argentino, tomo 1, 316–328.
    [Google Scholar]
  42. Hilley, G.E. & Strecker, M.R. (2005) Processes of oscillatory basin filling and excavation in a tectonically active orogen: quebrada del Toro Basin, NW Argentina: Geol . Soc. Am. Bull., 117, 887–901.
    [Google Scholar]
  43. Hongn, F., Del Papa, C., Powell, J., Petrinovic, I., Mon, R. & Deraco, V. (2007) Middle Eocene deformation and sedimentation in the Puna–Eastern Cordillera transition (23°–26°S): control by pre‐existing heterogeneities on the pattern of initial Andean shortening. Geology, 35, 271–274.
    [Google Scholar]
  44. Hongn, F.D., Tubia, J.M., Aranguren, A., Vegas, N., Mon, R. & Dunning, G.R. (2010) Magmatism coeval with lower Paleozoic shelf basins in NW‐Argentina (Tastil batholith): constraints on current stratigraphic and tectonic interpretations. J. South Am. Earth Sci., 29, 289–305.
    [Google Scholar]
  45. Horton, B.K. (1998) Sediment accumulation on top of the Andean orogenic wedge: Oligocene to late Miocene basins of the eastern Cordillera, southern Bolivia. Geol. Soc. Am. Bull., 110, 1174–1192.
    [Google Scholar]
  46. Horton, B.K. (2005) Revised deformation history of the central Andes: inferences from Cenozoic foredeep a intermontane basins of the Eastern Cordillera, Bolivia. Tectonics, 24, TC3011, doi: 10.1029/2003TC001619.
    [Google Scholar]
  47. Horton, B.K. & DeCelles, P.G. (1997) The modern foreland basin system adjacent to the Central Andes. Geology, 25, 895–898.
    [Google Scholar]
  48. Horton, B.K., Hampton, B.A. & Waanders, G.L. (2001) Paleogene synorogenic sedimentation in the Altiplano plateau and implications for initial mountain building in the central Andes. Geol. Soc. Am. Bull., 113, 1387–1400.
    [Google Scholar]
  49. Horton, B.K., Hampton, B.A., La Reau, B.N. & Baldellon, E. (2002) Tertiary provenance history of the northern and central Altiplano Plateau (central Andean Bolivia): a detrital record of plateau‐margins tectonics. J. Sedimentary Res., 72, 711–726.
    [Google Scholar]
  50. Hubert, J.F. & Filipov, A.J. (1989) Debris‐flow deposits in alluvial‐fan on the west flank of the White Mountains, Owens Valey, California, USA. Sed. Geol., 61, 177–205.
    [Google Scholar]
  51. Hubert, J.F. & Hyde, M.G. (1982) Sheet‐flow deposits of graded beds and mudstones on an alluvial sand flat‐playa system: upper Triassic Blomidan red beds, St. Mary's Bay, Nova Scotia. Sedimentology, 29, 457–474.
    [Google Scholar]
  52. Iaffa, D.N., Sàbat, F., Bello, D., Ferrer, O., Mon, R. & Gutierrez, A.A. (2011) Tectonic inversion in a segmented foreland basin from extensional to piggy back settings: the Tucumán basin in NW Argentina. J. South Am. Earth Sci., 31, 457–474.
    [Google Scholar]
  53. Isacks, B.L. (1988) Uplift of the Central Andean plateau and bending of the Bolivian orocline. J. Geophys. Res., 93, 3211–3231.
    [Google Scholar]
  54. Jordan, T.E. & Alonso, R.N. (1987) Cenozoic stratigraphy and basin tectonics of the Andes mountains, 20°–28° South Latitude. Am. Ass. Petrol. Geol. Bull., 71, 49–64.
    [Google Scholar]
  55. Jordan, T.E., Isacks, B.L., Allmendinger, R.W., Brewer, J.A., Ramos, V.A. & Ando, C.J. (1983) Andean tectonics related to geometry of subducted Nazca plate. Geol. Soc. Am. Bull., 94, 341–361.
    [Google Scholar]
  56. Jordan, T.E., Reynolds, J.H. & Erikson, P.J. (1997) Variability in age of initial shortening and uplift in the central Andes, 16‐33°30′S. In: Tectonic Uplift and Climate Change (Ed. by W.F.Ruddiman ), pp. 41–61. Plenum, New York.
    [Google Scholar]
  57. Kilmurray, J.O. & Igarzabal, A.P. (1971) Petrografia y rasgos geomorficos del batolito granitico de Santa Rosa de Tastil, provincia de Salta, Rep. Argentina. Rev. As. Geol. Arg., 26, 417–438.
    [Google Scholar]
  58. Kleinert, K. & Strecker, M.R. (2001) Climate change in response to orographic barrier uplift: paleosol and stable isotope evidence from the late Neogene Santa Maria basin, northwestern Argentina. Geol. Soc. Am. Bull., 113, 728–742.
    [Google Scholar]
  59. Kley, J. (1996) Transition from basement‐involved to thin‐skinned thrusting of the Cordillera Oriental of southern Bolivia. Tectonics, 15, 763–775.
    [Google Scholar]
  60. Kley, J. & Monaldi, C.R. (2002) Tectonic inversion in the Santa Barbara System of the central Andean foreland thrust belt, northwestern Argentina. Tectonics, 21, 1111–1118.
    [Google Scholar]
  61. Kley, J., Gangui, A.H. & Krüger, D. (1996) Basement‐involved blind thrusting in the eastern Cordillera Oriental, southern Bolivia: evidence from cross‐sectional balancing, gravimetric and magnetotelluric data. Tectonophysics, 259, 171–184.
    [Google Scholar]
  62. Kley, J., Muller, J., Tawackoli, S., Jacobshagen, V. & Manutsoglu, E. (1997) Pre‐Andean and Andean‐age deformation in the Eastern Cordillera of southern Bolivia. J. South Am. Earth Sci., 10, 1–19.
    [Google Scholar]
  63. Kley, J., Monaldi, C.R. & Salfity, J.A. (1999) Along‐strike segmentation of the Andean foreland: causes and consequences. Tectonophysics, 301, 75–94.
    [Google Scholar]
  64. Kley, J., Rossello, E.A., Monaldi, C.R. & Habighorst, B. (2005) Seismic and field evidence for selective inversion of Cretaceous normal faults, Salta rift, northwest Argentina. Tectonophysics, 399, 155–172.
    [Google Scholar]
  65. Marquillas, R.A. & Salfity, J.A. (1988) Tectonic framework and correlations of the Cretaceous‐Eocene Salta Group; Argentina. Lect. Notes Earth Sci., 17, 119–136.
    [Google Scholar]
  66. Marquillas, R.A., Del Papa, C. & Sabino, I.F. (2005) Sedimentary aspects and paleoenvironmental evolution of a rift basin: Salta Group (Cretaceous‐Paleogene), northwestern Argentina. Int. J. Earth Sci., 94, 94–113.
    [Google Scholar]
  67. Marrett, R. & Strecker, M.R. (2000) Response of intracontinental deformation in the central Andes to late Cenozoic reorganization of South American Plate motions. Tectonics, 19, 452–467.
    [Google Scholar]
  68. Marrett, R.A., Allmendinger, R.W., Alonso, R.N. & Drake, R.E. (1994) Late Cenozoic tectonic evolution of the Puna plateau and adjacent foreland, northwestern Argentine Andes. J. South Am. Earth Sci., 7, 179–207.
    [Google Scholar]
  69. Matteini, M., Mazzuoli, R., Omarini, R., Cas, R. & Maas, R. (2002) Geodynamical evolution of the central Andes at 24°S as inferred by magma composition along the Calama‐Olacapato‐El Toro transversal volcanic belt. J. Volcanol. Geotherm. Res., 118, 225–228.
    [Google Scholar]
  70. Mazzuoli, R., Vezzoli, L., Omarini, R., Acocella, V., Gioncada, A., Matteini, M., Dini, A., Guillou, H., Hauser, N., Uttini, A. & Scaillet, S. (2008) Miocene magmatism and tectonics in the easternmost sector of the Calama‐Olacapato‐El Toro fault system in Central Andes at ~24°S: Insights into the evolution of the Eastern Cordillera. Geol. Soc. Am. Bull., 120, 1493–1517.
    [Google Scholar]
  71. McPhie, J., Doyle, M. & Allen, R. (1993) Volcanic Textures: A Guide to the Interpretation of Textures in Volcanic Rocks. Centre for Ore Deposit and Exploration Studies University of Tasmania, Hobart, Australia, 198 pp.
    [Google Scholar]
  72. Miall, A.D. (1978) Lithofacies type and vertical profile models in braided river deposits: a summary. In: Fluvial Sedimentology (Ed. by A.D.Miall ) Can. Soc. Petrol. Geol. Memoirs, 5, 597–604.
    [Google Scholar]
  73. Mon, R. (1999) Cordillera Oriental. In: Geología del Noroeste Argentino (Ed. by G.Gonzalez Bonorino , R.Omarini & G.Viramonte ) Relatorio XIV Congreso Geológico Argentino, tomo 1, 426–431.
    [Google Scholar]
  74. Mortimer, E., Carrapa, B., Coutand, I., Schoenbohm, L., Sobel, E.R., Sosa Gomez, J. & Strecker, M.R. (2007) Fragmentation of a foreland basin in response to out‐of‐sequence basement uplifts and structural reactivation: El Cajon‐Campo del Arenal basin, NW Argentina. Geol. Soc. Am. Bull., 119, 637–653.
    [Google Scholar]
  75. Moya, M.C. (1999) El Ordovícico de los Andes del Norte Argentino. In: Geología del Noroeste Argentino (Ed. by G.Gonzalez Bonorino , R.Omarini & G.Viramonte ) Relatorio XIV Congreso Geológico Argentino, tomo 1, 134–152.
    [Google Scholar]
  76. Nemec, W. & Steel, R.J. (1984) Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass‐flow deposits. In: Sedimentology of Gravel and Conglomerates (Ed. by E.H.Koster & R.J.Steel ) Can. Soc. Petrol. Geol. Memoir, 10, 1–31.
    [Google Scholar]
  77. Noblet, C., Lavenu, A. & Marocco, R. (1996) Concept of continuum as opposed to periodic tectonism in the Andes. Tectonophysics, 255, 65–78, doi: 10.1016/0040‐1951(95)00081‐X.
    [Google Scholar]
  78. Omarini, R.H., Sureda, R.J., Gotze, H.‐J., Seilacher, A. & Pfluger, F. (1999) Puncoviscana folded belt in northwestern Argentina: testimony of Late Proteroizoic Rodinia fragmentation and pre‐Gondwana collisional episodes. Int. J. Earth Sci., 88, 76–97.
    [Google Scholar]
  79. Payrola Bosio, P., Powell, J., Del Papa, C. & Hongn, F. (2009) Middle Eocene deformation‐sedimentation in the Luracatao Valley: Tracking the beginning of the foreland basin of north western Argentina. J. South Am. Earth Sc., 28, 142–154.
    [Google Scholar]
  80. Petrinovic, I.A., Riller, U. & Brod, A. (2005) The Negra Muerta volcanic complex, Southern Central Andes: geochemical characteristics and magmatic evolution of an episodic volcanic centre. J. Volcanol. Geotherm. Res., 140, 295–320.
    [Google Scholar]
  81. Petrinovic, I.A., Martí, J., Aguirre‐Díaz, G.J., Guzmán, S., Geyer, A. & Salado Paz, N. (2010) The Cerro Aguas Calientes caldera, NW Argentina: an example of a tectonically controlled, polygenetic collapse caldera, and its regional significance. J. Volcanol. Geotherm. Res., 194, 15–26.
    [Google Scholar]
  82. Pierson, T.C. (1980) Erosion and deposition by debris flows at Mt. Thomas, North Canterbury, New Zealand. Earth Surf. Process., 5, 227–247.
    [Google Scholar]
  83. Pierson, T.C. & Costa, J.E. (1987) A rheologic classification of subaerial sediment‐water flows. Geol. Soc. Am. Reviews in Engin. Geol., 7, 1–12.
    [Google Scholar]
  84. Pierson, T.C. & Scott, K.M. (1985) Downstream dilution of a lahar: transition from debris flow to hyperconcentrated stream flow. Water Resour. Res., 21, 1511–1524.
    [Google Scholar]
  85. Reynolds, J.H., Galli, C.J., Hernandez, R.M., Idleman, B.D., Kotila, J.M., Hilliard, R.V. & Naeser, C.W. (2000) Middle Miocene tectonic development of the Transition Zone, Salta Province, northwest Argentina: magnetic stratigraphy from the Metàn Subgroup, Sierra de Gonzalez. Geol. Soc. Am. Bull., 112, 1736–1751.
    [Google Scholar]
  86. Riller, U., Petrinovic, I.A., Ramelow, J., Strecker, M.R. & Oncken, O. (2001) Late Cenozoic tectonism, collapse caldera and plateau formation in the Central Andes. Earth Planet. Sci. Lett., 188, 299–311.
    [Google Scholar]
  87. Salvini, F. & Storti, F. (2002) Three‐dimensional architecture of growth strata associated to fault‐bend, fault‐propagation, and décollement anticlines in non‐erosional environments. Sed. Geol., 146, 57–73.
    [Google Scholar]
  88. Sanchez, M.C. & Salfity, J.A. (1999) La cuenca cámbrica del Grupo Meson en el Noroeste Argentino: desarrollo estratigrafico y paleogeografico. Acta Geol. Hispanica, 34, 123–139.
    [Google Scholar]
  89. Schultz, A.W. (1984) Subaerial debris flow deposition in the Upper Paleozoic Cutler Formation, western Colorado. J. Sed. Petrol., 54, 759–772.
    [Google Scholar]
  90. Schwab, K. & Schäfer, A. (1976) Sedimentation und Tektonik im mittleren abschnitt des Rio Toro in der Ostkordillere NW‐Argentiniens. Geol. Rundschau, 65, 175–194.
    [Google Scholar]
  91. Siks, B.C. & Horton, B.K. (2011) Growth and fragmentation of the Andean foreland basin during eastward advance of fold‐thrust deformation, Puna plateau and Eastern Cordillera, northern Argentina. Tectonics, 30, TC6017, doi: 10.1029/2011TC002944, 2011
    [Google Scholar]
  92. Smith, G.A. (1986) Coarse‐grained nonmarine volcaniclastic sediment: terminology and depositional process. Geol. Soc. Am. Bull., 97, 1–10.
    [Google Scholar]
  93. Smith, G.A. (1991) Facies sequences and geometries in continental volcaniclastic sediments. In: Sedimentation in Volcanic Settings (Ed. by R.V.Fisher & G.A.Smith ) SEPM Spec. Publ., 45, 109–121.
    [Google Scholar]
  94. Smith, G.A. & Lowe, D.R. (1991) Lahars: volcano‐hydrologic events and deposition in the debris flow‐hyperconcentrated flow continuum. In: Sedimentation in Volcanic Settings (Ed. by R.V.Fisher & G.A.Smith ) SEPM Spec. Publ., 45, 59–70.
    [Google Scholar]
  95. Sobel, E.R. & Strecker, M.R. (2003) Uplift, exhumation and precipitation: tectonic and climatic control of Late Cenozoic landscape evolution in the northern Sierras Pampeanas, Argentina. Basin Res., 15, 431–451, doi: 10.1046/j.1365‐2117.2003.00214.x
    [Google Scholar]
  96. Sobel, E.R., Hilley, G.E. & Strecker, M.W. (2003) Formation of the internally drained contractional basins by aridity‐limited bedrock incisions. J. Geophys. Res., 108, 2344, doi: 10.1029.2002JB001883.
    [Google Scholar]
  97. Spotila, J.A., Farley, K.A., Yule, J.D. & Reiners, P.W. (2001) Near‐field transpressive deformation along the San Andreas fault zone in southern California, based on exhumation constrained by (U‐Th)/He dating. J. Geophys. Res., 106, 30909–30922.
    [Google Scholar]
  98. Starck, D. & Anzótegui, L.M. (2001) The late Miocene climate change – persistence of a climatic signal through the orogenic stratigraphic record in northwestern Argentina. J. South Am. Earth Sci., 14, 763–774.
    [Google Scholar]
  99. Strecker, M.R., Cerveny, P., Bloom, A.L. & Malizia, D. (1989) Late Cenozoic tectonism and landscape development in the foreland of the Andes: Northern Sierras Pampeanas (26°–28°S), Argentina. Tectonics, 8, 517–534.
    [Google Scholar]
  100. Strecker, M.R., Alonso, R.N., Bookhagen, B., Carrapa, B., Coutand, I., Hain, M.P., Hilley, G.E., Mortimer, E., Schoenbohm, L. & Sobel, E.R. (2009) Does the topographic distribution of the central Andean Puna Plateau result from climatic or geodynamic processes?Geology, 37, 643–646.
    [Google Scholar]
  101. Sylvester, A.G. (1988) Strike‐slip faults. Geol. Soc. Am. Bull., 100, 1666–1703.
    [Google Scholar]
  102. Trauth, M.H. & Strecker, M.R. (1999) Formation of landslide‐dammed lakes during a wet period between 40000 and 25000 yr B.P. in NW Argentina. Palaeogeogr. Palaeoclim. Palaeoecol., 109, 277–287.
    [Google Scholar]
  103. Turner, J.C.M. (1970) The Andes of Northwestern Argentina. Geol. Rundschau, 59, 1028–1063.
    [Google Scholar]
  104. Vallance, J.W. (2000) Lahars. In: Encyclopedia of Volcanoes (Ed. by H.Sigurdsson , B.Houghton , S.McNutt , H.Rymer & J.Stix ), pp. 601–616. Academic Press, San Diego, CA.
    [Google Scholar]
  105. Vandervoort, D.S., Jordan, T.E., Zeitler, P.K. & Alonso, R.N. (1995) Chronology of internal drainage development and uplift, southern Puna plateau, Argentine central Andes. Geology, 23, 145–148.
    [Google Scholar]
  106. Vergés, J., Burbank, D.W. & Meigs, A. (1996) Unfolding: an inverse approach to fold kinematics. Geology, 24, 175–178.
    [Google Scholar]
  107. Vezzoli, L., Matteini, M., Hauser, N., Omarini, R., Mazzuoli, R. & Acocella, V. (2009) Non‐explosive magma‐water interaction in continental setting: examples from the Miocene magmatism of the Eastern Cordillera of Central Andes. Bull. Volcanol., 71, 509–532, doi: 10.1007/s00445‐008‐0239‐5.
    [Google Scholar]
  108. Viramonte, J., Reynolds, J.H., Del Papa, C. & Disalvo, A. (1994) The Corte Blanco garnetiferous tuff: a distinctive late Miocene marker bed in northwestern Argentina applied to magnetic polarity stratigraphy in the Río Yacones, Salta Province. Earth Planet. Sci. Lett., 121, 519–531.
    [Google Scholar]
  109. Wilcox, R.E., Harding, T.P. & Seely, D.R. (1973) Basic wrench tectonics. Am. Assoc. Petrol. Geol. Bull., 57, 74–96.
    [Google Scholar]
  110. Zernack, A.V., Procter, J.N. & Cronin, S.J. (2009) Sedimentary signatures of cyclic growth and destruction of stratovolcanoes: a case study from Mt. Taranaki, New Zealand. Sed. Geol., 220, 288–305.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2012.00547.x
Loading
/content/journals/10.1111/j.1365-2117.2012.00547.x
Loading

Data & Media loading...

Supplements

(A) The stratigraphic transect at the head of the quebrada Carachi (Section 3 in Fig. 2) shows Barres sandstone and interbedded lavas of Puerta Tastil member (K/Ar age of 12.78 ± 0.19 Ma; Mazzuoli ., 2008) folded in a NNE‐plunging anticline. (B) At the mouth of the quebrada Lagunillas (Section 8 in Fig. 2), contact between the Puncoviscana Formation (PV) and lower Alfarcito conglomerate (LAC) is both stratigraphic (onlapping) (white line) and tectonic (red line) along a NW‐striking fault zone. The subvertical fault planes are oblique with respect to the E‐W‐oriented outcrop front and have N120° E strike and N30° E dip direction. The basement‐derived massive conglomerate (Gmm/cm) with interbedded sandstone (Sm/h) of the lower Alfarcito conglomerate shows syntectonic growth structures.

. Overviews of the stratigraphic and tectonic relations between the granodiorite of the Santa Rosa de Tastil batholith (STR), Las Cuevas member (LC) and lower Alfarcito conglomerate (LAC), to the N (A) and SW (B) of Alfarcito village (Section 1 in Fig. 2). Contacts are either stratigraphic overlapping (dashed lines) or faults (solid lines). The San Bernardo fault thrusts the Santa Rosa de Tastil grey granodiorite over the Miocene volcano‐sedimentary deposits of the El Toro basin. Synsedimentary faults deform contacts among the Las Cuevas member, lower Alfarcito conglomerate and granodiorite. The unconformity between the Las Cuevas member and the lower Alfarcito conglomerate represents a hiatus of . 4 Ma.

The stratigraphic transect measured at quebrada Carachi (Section 2 in Fig. 2). (A) Detail of the paraconcordant contact between the lower Alfarcito conglomerate (LAC) and Almagro A member (AA; RGcm facies). (B) Unconformable (15°) and erosive contact between the Almagro A member and lower Alfarcito conglomerate. A boulder conglomerate facies (RGcm) is at the edge of the channel‐like incision; sub‐horizontally stratified sandstone and mudstone facies (Vsh) aggraded into the channel; a boulder conglomerate facies (VGmm/cm) levels the sequence. The red box is Fig. S3C. (C) Detail (arrow) of flame structures on lacustrine laminated mudstones squeezed upward for the load of overlying conglomerate near the base of the Almagro A member. Hammer is 30 cm long. Representative conglomerate facies of the Almagro A member (Section 4; Fig. 3). Hammer is 30 cm long. (D) Close‐up view of a clast of fresh, vesiculated lava showing jigsaw fractures (arrows) infilled by fine‐sandy matrix (RGcm facies). (E) Clast‐supported, polygenetic pebble–cobble conglomerate facies (VGmm/cm facies).

Representative conglomerate facies of the Almagro B member. (A) Lower layer is a debris‐flow deposit comprising matrix‐supported conglomerate (VGmm/cm facies) with subvertical degassing pipes (arrows). Upper bed is a clast‐supported coarse breccia from syneruptive debris avalanche (RBcm/mm facies) with basal erosive surface. Exposure is 6 m thick (Section 9). (B) Overview of stacked debris‐flow beds (VGmm/cm facies; Section 9). Cobble‐boulder conglomerate is matrix‐ to clast‐supported, poorly sorted and with non‐homogeneous concentration of clasts. Individual conglomerate clasts are angular to subangular, indicating minimal reworking prior to deposition. Rule is 1 m long. (C) A very coarse, clast‐supported, polygenetic boulder conglomerate (VGcm) is at the base of the Almagro B member (Section 4; Fig. 3).

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error