1887
Volume 24, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

The Helmstedt‐Staßfurt salt wall is 70 km long, 6–8 km wide and one of the most important diapiric structures in northern Germany, based on the economically significant lignite‐bearing rim synclines. The analysed Schöningen rim syncline, located on the southwestern side of the Helmstedt‐Staßfurt structure, is 8 km long and 3 km wide. The basin‐fill is up to 366 m thick and characterized by 13 major lignite seams with thicknesses between 0.1 and 30 m. The key objectives of this article were to expand on the classical cross‐section based rim syncline analysis by the use of 3D models and basin simulations. Cross‐sections perpendicular to the basin axis indicate that the basin‐fill has a pronounced lenticular shape. This shape varies from more symmetric in the NW to clearly asymmetric in the SE. Isopach maps imply a two‐fold depocentre evolution. The depocentre migrated over time towards the salt wall and also showed some distinct shifts parallel to the salt wall. The basin modelling part of the study was carried out with the software PetroMod®, which focused on the burial history of the rim syncline. Modelling results also show the progressive migration of the rim syncline depocentre towards the salt wall. The present‐day asymmetry of the basin‐fill was already developed in the early phases of rim syncline evolution. The extracted geohistory curve shows initial rapid subsidence between 57 and 50 Ma and more moderate subsidence from 50 to 34 Ma. This pattern is interpreted to reflect salt evacuation from the source layer into the salt wall. The initial salt‐withdrawal rate was rapid, but later decreased probably due to depletion of the source layer.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2012.00544.x
2012-03-16
2024-04-24
Loading full text...

Full text loading...

References

  1. Ahrendt, H., Köthe, A., Lietzow, A., Marheine, D. & Ritzkowski, S. (1995) Lithostratigraphie, Biostratigraphie und radiometrische Datierung des Unter‐Eozäns von Helmstedt (SE‐Niedersachsen). ZdGG, 146, 450–457.
    [Google Scholar]
  2. Alsop, G.I. (1996) Physical modelling of fold and fracture geometries associated with salt diapirism. In: Salt Tectonics (Ed. by G.I.Alsop , D.J.Blundell & I.Davison ), Geol. Soc. Spec. Publ., 100, 227–241.
    [Google Scholar]
  3. Alves, T., Cartwright, J. & Davies, R. (2009) Faulting of salt‐withdrawal basins during early halokinesis: effects on the Paleogene Rio Doce Canyon system (Espirito Santo Basin, Brazil). AAPG Bull., 93, 617–652.
    [Google Scholar]
  4. Anderson, H.‐J. (1990) A molluscan fauna of the Annenberg beds (Middle Eocene) from the openminecast “Treue” near Helmstedt (Lower Saxony), FRG. Veröffentlichungen aus dem Übersee‐Museum Bremen Reihe A, 10, 1–2.
    [Google Scholar]
  5. van Asselen, S. (2011) The contribution of peat compaction to total basin subsidence: implications for the provision of accommodation space in organic‐rich deltas. Basin Res., 23, 239–255.
    [Google Scholar]
  6. van Asselen, S., Stouthamer, E. & Smith, N.D. (2010) Factors controlling peat compaction in alluvial floodplains: a case study in the cold‐temprate Cumberland Marshes, Canada. J. Sediment. Res., 79, 918–922.
    [Google Scholar]
  7. Baldschuhn, R., Best, G. & Kockel, F. (1991) Inversion tectonics in the north‐west German basin. In: Generation, Accumulation and Production of Europe′s Hydrocarbons (Ed. by A.M.Spencer ), Spec. Publ. Eur. Ass. Petrol. Geosci., 1, Oxford University Press, 149–159.
    [Google Scholar]
  8. Baldschuhn, R., Binot, F., Fleig, S. & Kockel, F. (1996) Geotektonischer Atlas von Nordwest‐Deutschland und dem deutschen Nordsee‐Sektor. Geologisches Jahrbuch Reihe A, 153, 55. Schweizerbart, Stuttgart.
    [Google Scholar]
  9. Barton, D.C. (1933) Mechanics of formation of salt domes, with special reference to Gulf coast salt domes of Texas and Louisiana. AAPG Bull., 17, 1025–1083.
    [Google Scholar]
  10. Berners, H. P., Lange, H. & Schneider, W. M. (1992) The Mittelplate Oil Field, German North Sea: Geological and sedimentological characteristics. In: Generation, Accumulation and Production of Europe ‘s Hydrocarbons II (Ed. by Spencer & A.M ), pp. 69–76. Spec. Publ. Eur. Ass. Petrol. Geosci. No. 2 Springer‐Verlag, Berlin.
    [Google Scholar]
  11. Best, G. (1996) Floßtektonik in Nordwestdeutschland: Erste Ergebnisse reflexionsseismischer Untersuchungen an der Salzstruktur “Oberes Allertal”. ZdGG, 147, 455–464.
    [Google Scholar]
  12. Best, G. & Zirngast, M. (2002) Die strukturelle Entwicklung der exhumierten Salzstruktur “Oberes Allertal”. Geol. Jahrb., Sonderheft A1, 142, 100.
    [Google Scholar]
  13. Blendinger, W., Brack, P., Norborg, A.K. & Wulf‐Pedersen, E. (2004) Three‐dimensional modelling of an isolated carbonate buildup (Triassic, Dolomites, Italy). Sedimentology, 51, 297–314.
    [Google Scholar]
  14. Blumenstengel, H. & Krutzsch, W. (2008): Tertiär. In: Geologie von Sachsen‐Anhalt (Ed. by G.H.Bachmann , B.‐C.Ehling , R.Eichner & M.Schwab ). pp. 267–292. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.
    [Google Scholar]
  15. Blumenstengel, H. & Unger, K.‐P. (1993) Zur Stratigraphie und Fazies des flözführenden Tertiär der Egelner Mulden (Sachsen‐Anhalt). Geologisches Jahrbuch Reihe A, 142, 113–129.
    [Google Scholar]
  16. Buchanan, P., Bishop, D. & Hood, D. (1996) Development of salt‐related structures in the Central North Sea: results from section balancing. In: Salt Tectonis (Ed. by G.I. Alsop, D.J. Blundell & I. Davison), Geol. Soc. Spec. Publ., 100, 111–128.
    [Google Scholar]
  17. Daudré, B. & Cloetingh, S. (1994) Numerical modelling of salt diapirism: influence of the tectonic regime. Tectonophysics, 240, 59–79.
    [Google Scholar]
  18. Davison, I. (1999) Tectonics and hydrocarbon distribution along the Brazilian South Atlantic margin. In: The Oil and Gas Habitats of the South Atlantic (Ed. by N. R.Cameron , R. H.Bate & V. S.Clure ), Geol. Soc. London, Spec. Publ., 153, 133–151.
    [Google Scholar]
  19. Davison, I., Bosence, D., Alsop, G. & Al‐Aawah, M. (1996) Deformation and sedimentation around active Miocene salt diapirs on the Tihama Plain, northwest Yemen. In: Salt Tectonis (Ed. by G.I.Alsop , D.J.Blundell & I.Davison ), Geol. Soc. Spec. Pub., 100, 23–39.
    [Google Scholar]
  20. Dekorp‐Basin Research‐Group: Bachmann, G.H., Bayer, U., Dürbaum, H.‐J., Hoffmann, N., Krawczyk, C.M., Lück, E., McCann, T., Meissner, R., Meyer, H., Oncken, O., Polom, U., Prochnow, U., Rabbel, W., Scheck, M. & Stiller, M. (1999) Deep crustal structure of the Northeast German Basin: new DEKORP‐BASIN ′96 deep‐profiling results. Geology, 27, 55–58.
    [Google Scholar]
  21. Dienemann, W. (1926) Beiträge zur Stratigraphie und Tektonik der Helmstedter Braunkohlenmulde. Jahrbuch der Preußischen Geologischen Landesanstalt, 46 (1925), 108–123.
    [Google Scholar]
  22. von Eynatten, H., Voigt, T., Meier, A., Franzke, H.‐J. & Gaupp, R. (2008) Provenance of the clastic Cretaceous Subhercynian basin fill: constraints to exhumation of the Harz mountains and the timing of inversion tectonics in the Central European Basin. Int. J. Earth Science, 97, 1315–1330.
    [Google Scholar]
  23. Fort, X., Brun, J.‐P. & Chauvel, F. (2004) Salt tectonics on the Angolan margin, synsedimentary deformation processes. AAPG Bull., 88, 1523–1544.
    [Google Scholar]
  24. Friberg, L.J. (2001) Untersuchungen zur Temperatur‐ und Absenkungsgeschichte sowie zur Bildung und Migration von Methan und molekularem Stickstoff im Nordostdeutschen Becken. Berichte des Forschungszentrums Jülich, 3914, 248.
    [Google Scholar]
  25. Gramann, F., Harre, W., Kreuzer, H., Look, E.‐R. & Mattiat, B. (1975) K‐Ar‐Ages of Eocene to Oligocene glauconitic sands from Helmstedt and Lehrte (Northwestern Germany). Newsl. Stratigr., 4, 71–86.
    [Google Scholar]
  26. Grassmann, S., Cramer, B., Delisle, G., Messner, J. & Winsemann, J. (2005) Geological history and petroleum system of the Mittelplate oil field, Northern Germany. Int. J. Earth Science, 94, 979–989.
    [Google Scholar]
  27. Guglielmo, G., Jackson, M. & Vendeville, B. (1997) Three‐dimensional visualization of salt walls and associated fault systems. AAPG Bull., 81, 46–61.
    [Google Scholar]
  28. Gürs, K. (2005) Das Tertiär Nordwestdeutschlands in der Stratigraphischen Tabelle von Deutschland 2002. Newsl. Stratigr., 41, 313–322.
    [Google Scholar]
  29. Gürs, K., Lietzow, A. & Ritzkowski, S. (2002): Tertiär, Nordwestdeutschland. In: Stratigraphische Tabelle von Deutschland 2002 (Ed. by Stratigraphische Kommission von Deutschland ), Poster. Deutsche Stratigraphische Kommission, Potsdam.
    [Google Scholar]
  30. Harbort, E. (1913) Beiträge zur Geologie der Umgebung von Königslutter und zur Tektonik des Magdeburg‐Halberstädter beckens. Jahrbuch der Königlich Preußischen Geologischen Landesanstalt zu Berlin, 34 (1), 206–267.
    [Google Scholar]
  31. Hudec, M.R. & Jackson, M.P.A. (2007) Terra infirma: understanding salt tectonics. Earth Sci. Rev., 82, 1–28.
    [Google Scholar]
  32. Hudec, M., Jackson, M. & Schultz‐Ela, D. (2009) The paradox of minibasin subsidence into salt: clues to the evolution of crustal basins. GSA Bull., 121, 201–221.
    [Google Scholar]
  33. Ings, S. & Beaumont, C. (2010) Shortening viscous pressure ridges, a solution to the enigma of initiating salt “withdrawal” minibasins. Geology, 38, 339–342.
    [Google Scholar]
  34. Jackson, M. & Talbot, C. J (1989) Anatomy of mushroom‐shaped diapirs. J. Struc. Geol., 11, 211–230.
    [Google Scholar]
  35. Jackson, M. & Vendeville, B. (1994) Regional extension as a geologic trigger for diapirism. GSA Bull., 106, 57–73.
    [Google Scholar]
  36. Karpe, W. (1994) Zur Dynamik halokinetischer Randsenken auf der Subherzynen Scholle. Hallesches Jahrb. Geowiss, 16, 79–93.
    [Google Scholar]
  37. Kley, J. & Voigt, T. (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa‐Iberia‐Europe convergence, not Alpine collision. Geology, 36, 839–842.
    [Google Scholar]
  38. Kley, J., Franzke, H.‐J., Jähne, F., Krawczyk, C., Lohr, T., Reicherter, K., Scheck‐Wenderoth, M., Sippel, J., Tanner, D. & van Gent, H. (2008) Strain and stress. In: Dynamics of Complex Intracontinental Basins: The Central European Basin System (Ed. by R.Littke , U.Bayer , D.Gajewski & S.Nelskamp ), pp. 97–124. Springer, 97–124.
    [Google Scholar]
  39. Kockel, F. (2003) Inversion structures in Central Europe – Expressions and reasons, an open discussion. Neth. J. Geosci./Geologie en Mijnbouw, 82, 367–382.
    [Google Scholar]
  40. Köthe, A. (2003) Dinozysten‐Zonierung im Tertiär Norddeutschlands. Rev. Paléobio., 22, 895–923.
    [Google Scholar]
  41. Köthe, A. (2005) Korrelation der Dinozysten‐Zonen mit anderen biostratigraphisch wichtigen Mikrofossilgruppen im Tertiär Norddeutschlands. Rev. Paléobio., 24, 697–718.
    [Google Scholar]
  42. Köthe, A. & Piesker, B. (2007) Stratigraphic distribution of Paleogene and Miocene dinocysts in Germany. Rev. Paléobio., 26, 1–39.
    [Google Scholar]
  43. Koyi, H. (1998) The shaping of salt diapirs. J. Struc. Geol., 20, 321–338.
    [Google Scholar]
  44. Koyi, H.A., Jenyon, M.K. & Petersen, K. (1993) The effect of basement faulting on diapirism. J. Petrol. Geol., 16, 285–312.
    [Google Scholar]
  45. Krutzsch, W. (2011) Stratigraphie und Klima des Paläogans im Mitteldeutschen Ästuar im Vergleich zur marinen nördlichen Umrahmung. ZdGG, 162, 19–47.
    [Google Scholar]
  46. Lenz, O.K. (2005) Palynologie und Paläoökologie eines Küstenmoores aus dem mitleren Eozän Mitteleuropas. Palaeontographica B, 271, 1–157.
    [Google Scholar]
  47. Lenz, O. & Riegel, W. (2001) Isopollen maps as a tool for the reconstruction of a coastal swamp from the Middle Eocene at Helmstedt (Northern Germany). Facies, 45, 177–194.
    [Google Scholar]
  48. Lenz, O., Riegel, W. & Bullwinkel, V. (2005) Die Wulfersdorfer Flözgruppe (Mitteleozän) im Tagebau Helmstedt. In: Das Tertiär im Mitteldeutschen Ästuar, Stand und Aktuelle Probleme (Ed. by C.‐H.Friedel & P.Balaske ). EdGG, 230, 17–19.
    [Google Scholar]
  49. Lietzow, A. & Ritzkowski, S. (1993) Exkursion Helmstedt area. – RCNPS‐RCNNS 4th biennial meeting Hannover, 11.‐15.10.1993 [unpublished fieldguide], 1–16.
  50. Lietzow, A. & Ritzkowski, S. (1996) Bergbau und die tertiäre Schichtenfolge. In: Exkursion A 1. Braunschweigische Kohlenbergwerke AG, Tagebau Schöningen (Ed. by K.Cornelius , H.Elsner , A.Lietzow , S.Ritzkowski , H.Schütte & H.Thieme ). In: 63. Tagung der Arbeitsgemeinschaft Nordwestdeutscher Geologen vom 28.‐31.5.1996 in Helmstedt [unpublished fieldguide]. pp. 30–35. NLfB, Hannover.
    [Google Scholar]
  51. Lietzow, A. & Ritzkowski, S. (2005a) Das kontinentale Paläogen bei Helmstedt, südöstliches Niedersachsen. In: Das Tertiär im Mitteldeutschen Ästuar, Stand und Aktuelle Probleme (Ed. by C.‐H.Friedel & P.Balaske ). EdGG, 230, 20–22.
    [Google Scholar]
  52. Lietzow, A. & Ritzkowski, S. (2005b) Das marine Paläogen bei Helmstedt, südöstliches Niedersachsen. In: Das Tertiär im Mitteldeutschen Ästuar, Stand und Aktuelle Probleme (Ed. by C.‐H.Friedel & P.Balaske ). EdGG, 230, 23–24.
    [Google Scholar]
  53. Lindsay, J.F. (1987) Upper Proterozoic evaporites in the Amadeus basin, central Australia, and their role in basin tectonics. GSA Bull., 99, 852–865.
    [Google Scholar]
  54. Lohr, T., Krawczk, C.M., Tanner, D.C., Samiee, R., Endres, H., Oncken, O., Trappe, H. & Kukla, P.A. (2007) Strain partitioning due to salt: insights from interpretation of a 3D seismic data set in the NW German Basin. Basin Res., 19, 579–597, doi: 10.1111/j.1365‐2117.2007.00338.x
    [Google Scholar]
  55. Look, E. (1984) Geologie und Bergbau im Braunschweiger Land. Geol. Jb., A78, 467.
    [Google Scholar]
  56. Lowell, J.D. (1985) Structural Styles in Petroleum Exploration. OGCI Publications, Tulsa, Oklahoma, 477 pp.
    [Google Scholar]
  57. Maione, S. & Pickford, S. (2001) Discovery of ring faults associated with salt withdrawal basins, Early Cretaceous age, in the East Texas Basin. Lead. Edge, 20, 818–829.
    [Google Scholar]
  58. Mallet, J.‐L. (1989) Discrete smooth interpolation. ATM Transactions on Graphics, 8, 121–144.
    [Google Scholar]
  59. Mallet, J.‐L. (1992) Discrete smooth interpolation in geometric modelling. Comput. Aided Des., 24, 178–191.
    [Google Scholar]
  60. Manger, G. (1952) Der Zusammenhang von Salztektonik und Braunkohlebildung bei der Entstehung der Helmstedter Braunkohlelagerstätten. Mitt. Geol. Staatsinstitut Hamburg, 21, 7–45.
    [Google Scholar]
  61. Martini, E. & Ritzkowski, S. (1968) Was ist das “Unter‐Oligozän”? Nachrichten der Akademie der Wissenschaften in Göttingen Mathematisch‐Physikalische Klasse, 1968, 231–249.
  62. Matthews, W.J., Hampson, G.J., Trudgill, B.D. & Underhill, J.R. (2007) Controls on fluviolacustrine reservoir distribution and architecture in passive salt‐diapir provinces: insights from outcrop analogs. AAPG Bull., 91, 1367–1403.
    [Google Scholar]
  63. Maystrenko, Y., Bayer, U. & Scheck‐Wenderoth, M. (2005) Structure and evolution of the Glueckstadt Graben due to salt movements, Int . J. Earth Science, 94, 799–814.
    [Google Scholar]
  64. Mohr, M., Kukla, P., Urai, J. & Bresser, G. (2005) Multiphase salt tectonics evolution in NW Germany: seismic interpretation and retro‐deformation. Int. J. Earth Science, 94, 917–940.
    [Google Scholar]
  65. Nalpas, T. & Brun, J.‐P. (1993) Salt flow and diapirism related to extension at crustal scale. Tectonophysics, 228, 349–362.
    [Google Scholar]
  66. Nettleton, L. (1934) Fluid mechanics of salt domes. AAPG Bull., 18, 1175–1204.
    [Google Scholar]
  67. Niebuhr, B. & Ernst, G. (1991) Faziesgeschichte und Entwicklungsdynamik von Campan, Maastricht und Eozän im Beienroder Becken (E‐Niedersachsen). ZdGG, 142, 251–283.
    [Google Scholar]
  68. Petersen, K. & Lerche, I. (1993) Interactive salt and sediment evolution: self‐consistent quantitative models. Tectonophysics, 228, 211–238.
    [Google Scholar]
  69. Pflug, H.D. (1952) Palynologie und Stratigraphie der eozänen Braunkohlen von Helmstedt. Paläontologische Zeitschrift, 26, 112–137.
    [Google Scholar]
  70. Pflug, H.D. (1986) Palyno‐Stratigraphie des Eozän/Oligozän im Raum von Helmstedt, in Nordhessen und im südlichen Anschlußbereich. In: Nordwestdeutschland im Tertiär (Ed. by H.Tobien ), Beiträge zur Regionalen Geologie der Erde, 18, 567–582.
    [Google Scholar]
  71. Poelchau, H.S., Baker, D.R., Hantschel, T., Horsfield, B. & Wygrala, B. (1997) Basin simulation and the design of the conceptual model. In: Petroleum and Basin Evolution (Ed. by D.H.Welte , B.Horsfield & D.R.Baker ), pp. 3–70, Springer Verlag, Berlin Heidelberg.
    [Google Scholar]
  72. Poliakov, A.N.B., Podladchikov, Y. & Talbot, C. (1993) Initiation of salt diapirs with frictional overburdens: numerical experiments. Tectonophysics, 228, 199–210.
    [Google Scholar]
  73. Quitzow, H.W. (1948) Über die Altersbeziehungen zwischen der älteren Braunkohlenformation Mitteldeutschlands und dem marinen Eozän Norddeutschlands. Abhandlungen der Geologischen Landesanstalt Berlin, Neue Folge, 214, 21–27.
    [Google Scholar]
  74. Riegel, W. & Wilde, V. (1995): Helmstedt. In: Klassische Aufschlüsse im Tertiär Süd‐Niedersachsens. (Ed. by W.Riegel , V.Wilde & D.Meischner ) Terra Nostra, 5/95, 196–216.
    [Google Scholar]
  75. Riegel, W. & Wilde, V. (2005) Das Untereozän im Tagebau Schöningen. In: Das Tertiär im Mitteldeutschen Ästuar, Stand und Aktuelle Probleme (Ed. by C.‐H.Friedel & P.Balaske ). EdGG, 230, 28–29.
    [Google Scholar]
  76. Riegel, W., Bode, T., Hammer, J., Hammer‐Schiemann, G., Lenz, O. & Wilde, V. (1999) The palaeoecology of the Lower and Middle Eocene at Helmstedt, Northern Germany – a study in contrasts. Acta Palaeobotanica Supplementum, 2, 349–358.
    [Google Scholar]
  77. Riegel, W., Wilde, V. & Lenz, O.K. (2008) From PETM to MECO – a palynological perspective of floral changes along a coastal plain in Central Europe during the early and middle Eocene. Terra Nostra, 2008/2, 234.
    [Google Scholar]
  78. Riegel, W., Lenz, O.K. & Wilde, V. (2010a) High resolution of environments in estuarine to fluvial sediments of the middle Eocene at Helmstedt, northern Germany. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 68, 466.
    [Google Scholar]
  79. Riegel, W., Wilde, V. & Lenz, O.K. (2010b) The Palaeogene of Schöningen (N‐Germany) – an example of land/sea interaction during the last greenhouse phase. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 68, 466–467.
    [Google Scholar]
  80. Ritzkowski, S. (1990) Marine Ingressionen in den terrestrischen Sedimentfolgen des Eozän von Helmstedt (SE‐Niedersachsen). Veröffentlichungen aus dem Übersee‐Museum Bremen, A10, 113–118.
    [Google Scholar]
  81. Rowan, M.G., Lawton, T.F., Giles, K.A. & Ratliff, R.A. (2003) Near‐salt deformation in La Popa basin, Mexico, and the northern Gulf of Mexico: A general model for passive diapirism. AAPG Bull., 87, 733–756.
    [Google Scholar]
  82. Scheck‐Wenderoth, M. & Lamarche, J. (2005) Crustal memory and basin evolution in the Central European Basin System‐new insights from a 3D structural model. Tectonophysics, 397, 143–165.
    [Google Scholar]
  83. Scheck‐Wenderoth, M., Maystrenko, Y., Hübscher, C., Hansen, M. & Mazur, S. (2008) Dynamics of salt basins. In: Dynamics of Complex Intracontinental Basins: The Central European Basin System (Ed. by R.Littke , U.Bayer , D.Gajewski & S.Nelskamp ), pp. 307–322. Springer, Berlin Heidelberg.
    [Google Scholar]
  84. Schroeder, H. (1918) Eocäne Säugetierreste aus Nord‐ und Mitteldeutschland. Jahrbuch der Königlich Preußischen Geologischen Landesanstalt, 37 (1), 164–195.
    [Google Scholar]
  85. Schultz‐Ela, D.D., Jackson, M.P.A. & Vendeville, B.C. (1993) Mechanics of active salt diapirism. Tectonophysics, 228, 275–312.
    [Google Scholar]
  86. Seni, S.J. & Jackson, M.P.A. (1983) Evolution of salt structures, east Texas diapir province. Part 2: patterns and rates of halokinesis. AAPG Bull., 67, 1245–1274.
    [Google Scholar]
  87. Shaker, S.S. (2004) Trapping vs. breaching seals in salt basins: a case history of Macaroni and Mt. Massive, Auger Basin, Gulf of Mexico. Gulf Coast Association of Geological Societies Transactions, 54, 647–654.
    [Google Scholar]
  88. Stackebrandt, W. (1986) Beiträge zur tektonischen Analyse ausgewählter Bruchzonen der Subherzynen Senke und angrenzender Gebiete (Aufrichtungszone, Flechtinger Scholle). Veröffentlichung des Zentralinstituts für Physik der Erde, 79, 81.
    [Google Scholar]
  89. Standke, G. (2008) Paläogeographie des älteren Tertiärs (Paleozän bis Untermiozän) im mitteldeutschen Raum. ZdGG, 159, 81–103.
    [Google Scholar]
  90. Stewart, S. (2006) Implications of passive salt diapir kinematics for reservoir segmentation by radial and concentric faults. Mar. Petrol. Geol., 23, 843–853.
    [Google Scholar]
  91. Stollhofen, H., Bachmann, G.H., Barnasch, J., Bayer, U., Beutler, G., Franz, M., Kästner, M., Legler, B., Mutterlose, J. & Radies, D. (2008). Upper Rotliegend to Early Cretaceous basin development. In: Dynamics of Complex Intracontinental Basins: The Central European Basin System (Ed. by R.Littke , U.Bayer , D.Gajewski & S.Nelskamp ), pp. 181–210. Springer, Berlin Heidelberg.
    [Google Scholar]
  92. Stottmeister, L. (2007) Tertiär. In: Erläuterungen zur Geologischen Karte !:25000 von Sachsen‐Anhalt (GK 25), Blatt Helmstedt, 3732. 2., neubearbeitete Auflage, 135–155.
  93. Talbot, C.J., Koyi, H., Sokoutis, D & Mulugeta, G. (1988) Identification of evaporite diapirs formed under the influenec of horizontal compression. Bull. Can. Petr. Geol., 36, 91–95.
    [Google Scholar]
  94. Trudgill, B. (2011) Evolution of salt structures in the northern Paradox Basin: controls on evaporite depostion, salt wall growth and supra‐salt stratigraphic architecture. Basin Res., 23, 208–238.
    [Google Scholar]
  95. Trusheim, F. (1957) Über Halokinese und ihre Bedeutung für die strukturelle Entwicklung Norddeutschlands. ZDGG, 109, 111–158.
    [Google Scholar]
  96. Trusheim, F. (1960) Mechanism of salt migration in northern Germany. AAPG Bull., 44, 1519–1540.
    [Google Scholar]
  97. Urai, J., Schléder, Z., Spiers, C. & Kukla, P. (2008) Flow and transport propertiesof salt rocks. In: Dynamics of Complex Intracontinental Basins: The Central Europaen Basin System (Ed. by R.Littke , U.Bayer , D.Gajewski & S.Nelskamp ), pp. 291–304. Springer, Berlin Heidelberg.
    [Google Scholar]
  98. Vendeville, B.C. (2002) A new interpretation of Trusheim's classic model of salt‐diapir growth. Gulf Coast Association of Geological Societies Transactions, 52, 943–952.
    [Google Scholar]
  99. Vendeville, B. C. & Jackson, M.P.A. (1992) The rise of diapirs during thin‐skinned extension. Mar. Petrol. Geol., 9, 331–353.
    [Google Scholar]
  100. Vergés, J., Munoz, J. & Martinez, A. (1992) South Pyrenean fold and thrust belt: The role of foreland evaporitic levels in thrust geometry. In: Thrust Tectonics (Ed. by K.R.McClay ). pp. 255–264. Chapman and Hall, London.
    [Google Scholar]
  101. Vinken, R(ed.) (1988) The northwest European tertiary basin. Geol. Jahrb., 100, 1–508.
    [Google Scholar]
  102. Voigt, T., Wiese, F., Eynatten, H. von, Franzke, H.‐J. & Gaupp, R. (2006) Facies evolution of syntectonic upper cretaceous deposits in the Subhercynian Cretaceous basin and adjoining areas (Germany). ZdGG, 157, 203–244.
    [Google Scholar]
  103. Waldron & Rygel
    Waldron & Rygel (2005) Role of evaporite withdrawal in the preservation of a unique coal‐bearing succession: Pennsylvanian Joggins Formation, Nova Scotia. Geology, 33, 337–340.
    [Google Scholar]
  104. Walther, R. (1995) Geologie von Mitteleuropa. 6. Auflage. E. Schweizerbart′sche Verlagsbuchhandlung. 566 pp.
  105. Wilde, V., Riegel, W. & Lenz, O.K. (2011) The Palaeogene of Schöningen (N‐Germany): a long‐term record of land‐sea interaction during the last greenhouse climate. Berichte der Geologischen Bundesanstalt, 85, 169.
    [Google Scholar]
  106. Woidt, W.D. (1978) Finite element calculations applied to salt dome analysis. Tectonophysics, 50, 369–386.
    [Google Scholar]
  107. Wrede, V. (1988) Der nördliche Harzrand – flache Abscherbahn oder wrench‐fault‐system. Geol. Rdsch., 77, 101–107.
    [Google Scholar]
  108. Wrede, V. (2008) Nördliche Harzrandstörung: Diskussionsbeiträge zu Tiefenstruktur, Zeitlichkeit und Kinematik. ZdGG, 159, 293–316.
    [Google Scholar]
  109. Yin, H. & Groshong, R.Jr (2007) A three‐dimensional kinematic model for the deformation above an active diapir. AAPG Bull., 91, 343–363.
    [Google Scholar]
  110. Yin, H., Zhang, J., Meng, L., Liu, Y. & Xu, S. (2009) Discrete element modeling of the faulting in the sedimentary cover above an active salt diapir. J. Struc. Geol., 31, 989–995.
    [Google Scholar]
  111. Ziegler, P.A. (1987) Compressional intra‐plate deformations in the Alpine foreland – an introduction. Tectonophysics, 137, 1–5.
    [Google Scholar]
  112. Ziegler, P.A. (1990) Geological atlas of Western and Central Europe. The Hague (Shell Internationale Petroleum Maatschappij B.V.). 2nd and completely revised edition. Production by Shell, The Hague, distribution by Elsevier, Amsterdam, PP. 1–238.
    [Google Scholar]
  113. Ziegler, P.A., van Wees, J.‐D. & Cloetingh, S. (1998) Mechanical controls on collision‐related compressional intraplate deformation. Tectonophysics, 300, 103–129.
    [Google Scholar]
  114. Zirngast, M. (1996) The development of the Gorleben salt dome (northwest Germany) based on quantitative analysis of peripheral sinks. In: Salt Tectonis (Ed. by G.I.Alsop , D.J.Blundell & I.Davison ), Geol. Soc. Spec. Publ., 100, 203–226.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2012.00544.x
Loading
/content/journals/10.1111/j.1365-2117.2012.00544.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error