1887
Volume 61 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

New magnetotelluric (MT) data from two perpendicular profiles in the Kristineberg area, northern Sweden, were analysed and modelled. In the Skellefte Ore District, the Kristineberg volcanic hosted massive sulphide (VHMS) deposit mine is one of the largest and deepest (1250 m). Seventeen broadband magnetotelluric stations were installed along two existing seismic reflection lines. The profiles were 6 and 12 km long with 500 m and 1 km site spacing, respectively. The obtained MT transfer functions in the period range of 0.0015–200 s are of fairly good quality. Detailed strike and dimensionality analysis reveal consistent but period dependent, strike directions, indicating a change in the geoelectrical strike with depth. From the two‐dimensional inversion of the determinant of the impedance tensor, two stable conductivity models with good data fit were obtained. The addition of seismic reflection information from the co‐located survey, improved the data fit of one of them. Extensive sensitivity analyses helped to delineate the well resolved regions of the models and to determine the position of pronounced boundaries. The results are in good agreement with previous studies, especially regarding the presence of a deep conductor interpreted as a structural basement to the district. They also reveal with more detail the configuration of the main geological units of the Skellefte Ore District, especially of the ore bearing volcanic rocks and the embedded alteration zones.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2011.01040.x
2012-02-17
2024-03-29
Loading full text...

Full text loading...

References

  1. AllenR., WeihedP. and SvensonS.1996. Setting of Zn‐Cu‐Au‐Ag massive sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte district, Sweden. Economic Geology and the Bulletin of the Society of Economic Geologists 91(6), 1022–1053.
    [Google Scholar]
  2. BABEL
    BABEL . 1990. Evidence for early Proterozoic plate tectonics from seismic reflection profiles in the Baltic shield. Nature 348(6296), 34–38.
    [Google Scholar]
  3. BahrK.1988. Interpretation of the magnetotelluric impedance tensor: Regional induction and local telluric distortion. Journal of Geophysics-Zeitschrift für Geophysik62(2), 119–127.
    [Google Scholar]
  4. BahrK.1991. Geological noise in magnetotelluric data: A classification of distortion types. Physics of The Earth and Planetary Interiors 66(1‐2), 24–38.
    [Google Scholar]
  5. BillstroemK. and WeihedP.1996. Age and provenance of host rocks and an ores in the paleoproterozoic Skellefte district, northern Sweden. Economic Geology and the Bulletin of the Society of Economic Geologists 91(6), 1054–1072.
    [Google Scholar]
  6. DehghannejadM., JuhlinC., MalehmirA., SkyttäP. and WeihedP.2010. Reflection seismic imaging of the upper crust in the Kristineberg mining area, northern Sweden. Journal of Applied Geophysics 71(4), 125–136.
    [Google Scholar]
  7. EggersD.1982. An eigenstate formulation of the magnetotelluric impedance tensor. Geophysics 47(8), 1204–1214.
    [Google Scholar]
  8. EliassonT. and StrángT.1998. Kartbladen 23H Stensele. In C.‐H.Wahlgren (Ed.), Regional berggrundsgeologisk undersökning, Sammanfattning av pågående undersökningar 1997 , Number 97 in Rapporter och meddelanden, pp. 55–59. Geological Survey of Sweden.
    [Google Scholar]
  9. GaálG.1990. Tectonic styles of Early Proterozoic ore deposition in the Fennoscandian Shield. Precambrian Research 46(1‐2), 83–114.
    [Google Scholar]
  10. GaálG. and GorbatschevR.1987. An outline of the precambrian evolution of the Baltic shield. Precambrian Research 35, 15–52.
    [Google Scholar]
  11. HietanenA.1975. Generation of potassium poor magmas in northern Sierra Nevada and the Svecofennian of Finland. Journal of Research of the US Geological Survey 3(6), 631–645.
    [Google Scholar]
  12. HübertJ., MalehmirA., SmirnowM., TryggvasonA. and PedersenL.B.2009. MT measurements in the western part of the Paleoproterozoic Skellefte Ore District, Northern Sweden: A contribution to an integrated geophysical study. Tectonophysics 475(3‐4), 493–502.
    [Google Scholar]
  13. JuhlinC., ElmingS., MellqvistC., OhlanderB., WeihedP. and WikstromA.2002. Crustal reflectivity near the Archaean‐Proterozoic boundary in northern Sweden and implications for the tectonic evolution of the area. Geophysical Journal International 150(1), 180–197.
    [Google Scholar]
  14. KorjaA. and HeikkinenP.2005. The accretionary Svecofennian orogen–insight from the BABEL profiles. Precambrian Research 136(3‐4), 241–268.
    [Google Scholar]
  15. LahtinenR., KorjaA. and NironenM.2005. Chapter 11 Paleoproterozoic tectonic evolution. In: Precambrian Geology of Finland Key to the Evolution of the Fennoscandian Shield, Vol. 14 of Developments in Precambrian Geology (Eds. P. N. M.Lehtinen and O.Rämö ), pp. 481–531. Elsevier.
    [Google Scholar]
  16. LedoJ., QueraltP., MartiA. and JonesA.G.2002. Two‐dimensional interpretation of three‐dimensional magnetotelluric data: An example of limitations and resolution. Geophysical Journal International 150(1), 127–139.
    [Google Scholar]
  17. MalehmirA., ThunehedH. and TryggvasonA.2009. The Paleoproterozoic Ksristineberg mining area, northern Sweden: Results from integrated 3D geophysical and geologic modeling, and implications for targeting ore deposits. Geophysics 74(1), B9–B22.
    [Google Scholar]
  18. MalehmirA., TryggvasonA., JuhlinC., Rodriguez‐TablanteJ. and WeihedP.2006. Seismic imaging and potential field modelling to delineate structures hosting VHMS deposits in the Skellefte Ore District, northern Sweden. Tectonophysics 426(3‐4), 319–334.
    [Google Scholar]
  19. MalehmirA., TryggvasonA., LickorishH. and WeihedP.2007. Regional structural profiles in the western part of the Palaeoproterozoic Skellefte Ore District, northern Sweden. Precambrian Research 159(1‐2), 1–18.
    [Google Scholar]
  20. MellqvistC., ÖhlanderB., SkioldT. and WikstromA.1999. The Archaean‐Proterozoic Palaeoboundary in the Luleå area, northern Sweden: Field and isotope geochemical evidence for a sharp terrane boundary. Precambrian Research 96(3‐4), 225–243.
    [Google Scholar]
  21. NolascoR., TaritsP., FillouxJ. and ChaveA.1998. Magnetotelluric imaging of the Society Islands hotspot. Journal of Geophysical Research-Solid Earth 103(B12), 30 287–30 309.
    [Google Scholar]
  22. ParkS. and MackieR.2000. Resistive (dry?) lower crust in an active orogen, Nanga Parbat, northern Pakistan. Tectonophysics 316(3‐4), 359–380.
    [Google Scholar]
  23. PedersenL. and EngelsM.2005. Routine 2D inversion of magnetotelluric data using the determinant of the impedance tensor. Geophysics 70(2), G33–G41.
    [Google Scholar]
  24. RasmussenT., RobertsR. and PedersenL.1987. Magnetotellurics along the Fennoscandian Long‐Range profile. Geophysical Journal of the Royal Astronomical Society 89(3), 799–820.
    [Google Scholar]
  25. RutlandR.W.R., KeroL., NilssonG. and StøolenL.K.2001. Nature of a major tectonic discontinuity in the Svecofennian province of northern Sweden. Precambrian Research 112(3‐4), 211–237.
    [Google Scholar]
  26. SchwalenbergK., RathV. and HaakV.2002. Sensitivity studies applied to a two‐dimensional resistivity model from the Central Andes. Geophysical Journal International 150(3), 673–686.
    [Google Scholar]
  27. SiripunvarapornW. and EgbertG.2000. An efficient data‐subspace inversion method for 2‐D magnetotelluric data. Geophysics 65(3), 791–803.
    [Google Scholar]
  28. SiripunvarapornW., EgbertG., LenburyY. and UyeshimaM.2005. Three‐dimensional magnetotelluric inversion: Data‐space method. Physics of the Earth and Planetary Interiors 150(1‐3), 3–14.
    [Google Scholar]
  29. SkiöldT.1988. Implications of new U–Pb zircon chronology to early proterozoic crustal accretion in northern Sweden. Precambrian Research 38(2), 147–164.
    [Google Scholar]
  30. SkyttäP., HermanssonT., AnderssonJ. and WeihedP.2011. New zircon data supporting models of short‐lived igneous activity at 1.89 Ga in the western Skellefte District, central Fennoscandian Shield. Solid Earth 3(1), 355–383.
    [Google Scholar]
  31. SmirnovM.2003. Magnetotelluric data processing with a robust statistical procedure having a high breakdown point. Geophysical Journal International 152(1), 1–7.
    [Google Scholar]
  32. SpitzS.1985. The magnetotelluric impedance tensor properties with respect to rotations. Geophysics 50(10), 1610–1617.
    [Google Scholar]
  33. SwiftC.M.1967. A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States . Thesis, Massachusetts Institute of Technology . Advisor : Theodore R. Madden.
    [Google Scholar]
  34. SzarkaL. and MenvielleM.1997. Analysis of rotational invariants of the magnetotelluric impedance tensor. Geophysical Journal International 129(1), 133–142.
    [Google Scholar]
  35. TryggvasonA., MalehmirA., Rodriguez‐TablanteJ., JuhlinC. and WeihedP.2006. Reflection seismic investigations in the western part of the paleoproterozoic VHMS‐bearing Skellefte district, northern Sweden. Economic Geology 101(5), 1039–1054.
    [Google Scholar]
  36. WasströmA.1993. The Knaften granitoids of Västerbotten County, northern Sweden. In: Radiometric dating results , Number 823 in C (ed. T.Lundqvist ), pp. 60–64. Geological Survey of Sweden.
    [Google Scholar]
  37. WasströemA.1996. U‐Pb zircon dating of a quartz‐feldspar porphyritic dyke in the Knaften area, Vásterbotten County, northern Sweden. In: Radiometric dating results 2 , Number 828 in C (ed. T.Lundqvist ) pp. 34–40. Geological Survey of Sweden.
    [Google Scholar]
  38. WeaverJ.T., AgarwalA.K. and LilleyF.E.M.2000. Characterization of the magnetotelluric tensor in terms of its invariants. Geophysical Journal International 141(2), 321–336.
    [Google Scholar]
  39. WeihedP.2010. Palaeoproterozoic mineralized volcanic arc systems and tectonic evolution of the Fennoscandian Shield: Skellefte District Sweden. GFF 132(1), 83–91.
    [Google Scholar]
  40. WeihedP., BergmanJ. and BergströmU.1992. Metallogeny and tectonic evolution of the Early Proterozoic Skellefte district, northern Sweden. Precambrian Research 58(1‐4), 143–167. Precambrian Metallogeny Related to Plate Tectonics.
    [Google Scholar]
  41. WeihedP., BillströmK., PerssonP. and WeihedJ.2002. Relationship between 1.90‐1.85 Ga accretionary processes and 1.82‐1.80 Ga oblique subduction at the Karelian craton margin, Fennoscandian Shield. Journal of the Geological Society of Sweden 124(Part 3), 163–180.
    [Google Scholar]
  42. WelinE.1987. The depositional evolution of the Svecofennian supracrustal sequence in Finland and Sweden. Precambrian Research 35, 95–113. Precambrian Geology and Evolution of the Cental Baltic Shield.
    [Google Scholar]
  43. WieseH.1962. Geomagnetische Tiefentellurik Teil II: Die Streichrichtung der Untergrundstrukturen des elektrischen Widerstands, erschlossen aus geomagnetischen Variationen. Geofisica pura e applicata 52, 83–103.
    [Google Scholar]
  44. WilsonM.R., SehlstedtS., ÅkeClaesson L., SmellieJ.A., AftalionM., HamiltonP.J. and FallickA.E.1987. Jorn: An Early Proterozoic intrusive complex in a volcanic‐arc environment, north Sweden. Precambrian Research 36(3‐4), 201–225.
    [Google Scholar]
  45. ZhangP., RobertsR. and PedersenL.1987. Magnetotelluric strike rules. Geophysics 52(3), 267–278.
    [Google Scholar]
  46. ÅrebäckH., BarrettT., AbrahamssonS. and FagerstromP.2005. The Palaeoproterozoic Kristineberg VMS deposit, Skellefte district, northern Sweden, part I: Geology. Mineralium Deposita 40(4), 351–367.
    [Google Scholar]
  47. ÖhlanderB., SkiöldT., Åke ElmingS., ClaessonS. and NiscaD.1993. Delineation and character of the Archaean‐Proterozoic boundary in northern Sweden. Precambrian Research 64(1‐4), 67–84. The Baltic Shield.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2011.01040.x
Loading
/content/journals/10.1111/j.1365-2478.2011.01040.x
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): 2D inversion; Magnetotelluric; Mining

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error