1887
Volume 20 Number 4
  • E-ISSN: 1365-2117
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2008.00387.x
2008-11-27
2024-03-28
Loading full text...

Full text loading...

References

  1. Behn, M.D., Lin, J. & Zuber, M.T. (2002) Mechanisms of normal fault development at mid‐ocean ridges. J. Geophys. Res., 107, doi: DOI: 10.1029/2001JB000503
    [Google Scholar]
  2. Behn, M.D., Sinton, J.M. & Detrick, R.S. (2004) Effect of the Galapagos hotspot on seafloor volcanism along the Galapagos Spreading Center (90.9–97.6°W). Earth Planet. Sci. Lett., 217, 331–347.
    [Google Scholar]
  3. Bell, T.H. (1979) Mesoscale sea floor roughness. Deep-Sea Res., 26A, 65–76.
    [Google Scholar]
  4. Betz, F. & Hess, H.H. (1942) The floor of the North Pacific Ocean. Geograph. Rev., 32, 99–116.
    [Google Scholar]
  5. Boulton, G.S. & Hindmarsh, R.C.A. (1987) Sediment deformation beneath glaciers: rheology and geological consequences. J. Geophys. Res., 92, 9059–9082.
    [Google Scholar]
  6. Bradwell, R., Stoker, M.S., Golledge, N.R., Wilson, C., Merritt, J., Long, D., Everest, J.D., Hestvik, O.B., Stevenson, A., Hubbard, A.L., Finlayson, A.G. & Mathers, H.E. (2008) The northern sector of the last British ice sheet: maximum extent and demise. Earth‐Sci. Rev., 88, 207–226.
    [Google Scholar]
  7. Cartwright, J. & Huuse, M. (2005) 3D seismic technology: the geological Hubble. Basin Res., 17, 1–20, doi: DOI: 10.1111/j.1365-2117.2005.00252.x
    [Google Scholar]
  8. Chadwick, W.W., Embely, R.W. & Fox, C.G. (1995) Seabeam depth changes associated with recent lava flows, coaxial segment, Juan de Fuca Ridge, evidence for multiple eruptions between 1981–1993. Geophys. Res. Lett., 22, 167–170.
    [Google Scholar]
  9. Chiu, J.‐K. & Liu, C.‐S. (2008) Comparison of sedimentary processes on adjacent passive and active continental margins offshore of SW Taiwan based on echo character studies. Basin Res., 20, 503–518.
  10. Chough, S. & Hesse, R. (1976) Submarine meandering thalweg and turbidity currents flowing for 4,000 km in the Northwest Atlantic Mid‐Ocean Channel, Labrador Sea. Geology, 4, 529–533.
    [Google Scholar]
  11. Combier, V., Singh, S.C., Cannat, M. & Escartin, J. (2008) Mechanical decoupling and thermal structure at the East Pacific Rise axis 9°N: constraints from axial magma chamber geometry and seafloor structures. Earth Planet. Sci. Lett., 272, 19–28.
    [Google Scholar]
  12. Crough, T.S. (1978) Thermal origin of mid‐plate hot‐spot swells. Geophys. J. R. Astr. Soc., 55, 451–469.
    [Google Scholar]
  13. Davies, R.J., Posamentier, H.W., Wood, L.J. & Cartwright, J.A. (2007) Seismic geomorphology: applications to hydrocarbon exploration and production. Geol. Soc. Spec. Publ., 277, 288pp.
  14. Earthref
    Earthref (2008). Seamount Catalog in the Seamount Biogeosciences Network (SBN) at http://earthref.org/SBN/
  15. Fournier, M., Petit, C., Charmot‐Rooke, N., FAbbri, O., Huchon, B., Maillot, B. & Lepvrier, C. (2008) Do ridge‐ridge‐fault triple junctions exist on Earth? Evidence from the Aden‐Owen‐Carlsberg junction in the NW Indian Ocean. Basin Res., 20, doi: DOI: 10.1111/j.1365-2117.2008.00356.x
    [Google Scholar]
  16. Geletti, R., Del Ben, A., Busetti, M., Ramella, R. & Volpi, V. (2008) Gas seeps linked to salt structures in the Central Adriatic Sea. Basin Research, 20, doi: DOI: 10.1111/j.1365-2117.2008.00373.x
    [Google Scholar]
  17. Goff, J.A. & Jordan, T.H. (1988) Stochastic modelling of seafloor morphology: inversion of Sea Beam data for second-order statistics. J. Geophys. Res., 93, 13589–13608.
    [Google Scholar]
  18. Gupta, S., Collier, J., Palmer‐Felgate, A. & Potter, G. (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. Nature, 448, 342–345.
    [Google Scholar]
  19. Hillier, J.K. (2008) Wavelet‐based seamount detection and isolation with a modified wavelet transform. Basin Res., 20, 555–573.
    [Google Scholar]
  20. Hillier, J.K. & Smith, M. (2008) Regional‐residual separation; strengthening the signal and visualizing glacial lineaments. Earth Surf. Process. Landforms, doi: DOI: 10.1002/esp.1659
    [Google Scholar]
  21. Hillier, J.K. & Watts, A.B. (2004) Plate‐like subsidence of the East Pacific Rise – South Pacific Superswell system. J. Geophys. Res., 109, doi: DOI: 10.1029/2004JB003041
    [Google Scholar]
  22. Hillier, J.K. & Watts, A.B. (2005) Relationship between depth and age in the North Pacific Ocean. J. Geophys. Res., 110, art. no. B02405, doi: DOI: 10.1029/2004JB003406
    [Google Scholar]
  23. Hillier, J.K. & Watts, A.B. (2007) Global distribution of seamounts from ship‐track bathymetry data. Geophys. Res. Lett., 34, art. no. L113304, doi: DOI: 10.1029/2007GL029874
    [Google Scholar]
  24. Hirano, N., Kawamura, K., Hattori, M., Saito, K. & Ogawa, Y. (2001) A new type of intra‐plate volcanism; young alkali basalts discovered from the subducting Pacific Plate, northern Japan Trench. Geophys. Res. Lett., 28, 2719.
    [Google Scholar]
  25. Hirano, N., Koppers, A.P., Takahashi, A., Fujiwara, T. & Nakanishi, M. (2008) Seamounts, knolls and petit‐spot monogenetic volcanoes on the subducting Pacific Plate. Basin Res., 20, doi: DOI: 10.1111/j.1365-2117.2008.00363.x
    [Google Scholar]
  26. I.O.C
    I.O.C (2003) GEBCO 1minute grid . http://www.ngdc.noaa.gov/mgg/gebco
  27. Iwahashi, J. & Pike, R.J. (2007) Automated classifications of topography from DEMs by an unsupervised nested‐means algorithm and a three‐part geometric signature. Geomorphology, 86, 409–440.
    [Google Scholar]
  28. Janney, P.E. & Castillo, P.R. (1999) Isotope geochemistry of the Darwin Rise seamounts and the nature of long‐term mantle dynamics beneath the central Pacific. J. Geophys. Res., 104, 10571–10589.
    [Google Scholar]
  29. Kite, E.S., Hovius, N., Hillier, J.K. & Besserer, J. (2007) Candidate mud volcanoes in the Northern Plains of Mars. Eos. Trans. AGU, 88 (52), Fall Meet. Suppl., Abstract V13B‐1346.
    [Google Scholar]
  30. Kopp, H., Weinrebe, W., Ladage, S., Barckhausen, U., Klaeschen, D., Flueh, E.R., Gaedicke, C., Djajadihardja, Y., Grevemeyer, I., Krabbenhoeft, A., Papenberg, C. & Zillmer, M. (2008) Lower slope morphology of the Sumatra trench system. Basin Res., 20, 519–529.
    [Google Scholar]
  31. Lave, J. & Avouac, J.P. (2001) Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J. Geophys. Res., 106, 26561–26591.
    [Google Scholar]
  32. Malinverno, A. (1991) Inverse square‐root dependence of mid‐ocean ridge flank roughness on spreading rate. Nature, 352 (6330), 58–60.
    [Google Scholar]
  33. McKenzie, D.P., Watts, A.B., Parsons, B. & Roufosse, M. (1980) Planform of mantle convection beneath the Pacific Ocean. Nature, 288, 442–446.
    [Google Scholar]
  34. Menard, H.W. (1964) Marine Geology of the Pacific. McGraw‐Hill, New York, 271pp.
    [Google Scholar]
  35. Menard, H.W. & Smith, S.M. (1966) Hypsometry of the ocean basin provinces. J. Geophys. Res., 71, 4305–4325.
    [Google Scholar]
  36. Mitchell, N.C. (2001) Transition from circular to stellate forms of submarine volcanoes. J. Geophys. Res., 106, 1987–2003.
    [Google Scholar]
  37. Mitchell, N.C. (2006) Morphologies of knickpoints in submarine canyons. Geol. Soc. Am. Bull., 118, 589–605.
    [Google Scholar]
  38. Mitchell, N.C., Beier, C., Rosin, P.L., Quartau, R. & Tempera, F. (2008) Lava penetrating water: submarine lava flows around the coasts of Pico Island, Azores. Geochem. Geophys. Geosyst., 9, art. No. Q03024, doi: DOI: 10.1029/2007GC001725
    [Google Scholar]
  39. Mitchell, N.C., Dade, W.B. & Masson, D. (2003) Erosion of the submarine flanks of the Canary Islands. J. Geophy. Res., 108, art. No. F16002, doi: DOI: 10.1029/2002JF000003
    [Google Scholar]
  40. Mitchell, N.C. & Huthnance, J.M. (2007) Comparing the smooth, parabolic shapes of interfluves in continental slopes to predictions of diffusion transport models. Mar. Geol., 236, 189–208.
    [Google Scholar]
  41. Mitchell, N.C., Livermore, R.A., Fabretti, P. & Carrara, G. (2000) The Bouvet tripe junction, 20 to 10 Ma, and extensive transtensional deformation adjacent to the Bouvet and Conrad transforms. J. Geophys. Res., 105, 8279–8296.
    [Google Scholar]
  42. Mitchell, N.C. & Lofi, J. (2008) Submarine and subaerial erosion of volcanic landscapes: comparing Pacific Ocean seamounts with Valencia Seamount, exposed during the Messinian Salinity Crisis. Basin Res., 20, doi: DOI: 10.1111/j.1365-2117.2008.00355.x
    [Google Scholar]
  43. Mitchell, N.C. & Searle, R.C. (1998) Fault scarp statistics at the Galapagos spreading centre from deep tow data. Mar. Geophys. Res., 20 (3), 183–193.
    [Google Scholar]
  44. Montgomery, D.R., Balco, G. & Willett, S.D. (2001) Climate, tectonics and morphology of the Andes. Geology, 29, 579–582.
    [Google Scholar]
  45. Morgan, E.C., McAdoo, B.G. & Baise, L.G. (2008) Quantifying geomorphology associated with large subduction earthquake zones. Basin Res., 20, doi: DOI: 10.1111/j.1365-2117.2008.00368.x
    [Google Scholar]
  46. Morgan, J. (1971) Convection plumes in the lower mantle. Nature, 230, 42–43.
    [Google Scholar]
  47. Murray, J. & Hjort, J. (1912) The Depths of the Ocean: A General Account of the Modern Science of Oceanography Based Largely on the Scientific Researches of the Norwegian Steamer Michael Sars in the North Atlantic. MacMillan and Co, London 821pp.
    [Google Scholar]
  48. N.O.A.A.
    N.O.A.A. (1988) Data announcement 88‐MGG‐02, Digital Relief of the Surface of the Earth. National geophysical data center, Boulder, CO.
    [Google Scholar]
  49. Pike, R.J. (2000) Geomorphometry – diversity in quantitative surface analysis. Prog. Phys. Geogr., 24, 1–20.
    [Google Scholar]
  50. Ramsey, L.A., Hovius, N., Lauge, D. & Liu, C.S. (2006) Topographic characteristics of the submarine Taiwan orogen. J. Geophys. Res., 111, art. No. F02009, doi: DOI: 10.1029/2005JF000314
    [Google Scholar]
  51. Renkin, M.L. & Sclater, J.G. (1988) Depth and age in the North Pacific. J. Geophys. Res., 93, 2919–2935.
    [Google Scholar]
  52. Ribe, N.M. & Christensen, U.R. (1999) The dynamical origin of Hawaiian volcanism. Earth Planet. Sci. Lett., 171, 517–531.
    [Google Scholar]
  53. R.M.B.S.
    R.M.B.S. (2008) Ridge multibeam synthesis project. http://ocean‐ridge.ldeo.columbia.edu/general/html/home.html
  54. Robinson, E.P., Das, S. & Watts, A.B. (2006) Earthquake rupture stalled by a subducting fracture zone. Science, 5777, 1203–1205.
    [Google Scholar]
  55. Rosenblatt, P., Pinet, P.C. & Thouvenot, E. (1994) Comparative hypsometric analysis of Earth and Venus. Geophys. Res. Lett., 21, 465–468.
    [Google Scholar]
  56. Scheirer, D. & Macdonald, K.C. (1995) Near‐axis seamounts on the flanks of the East Pacific Rise, 8°N to 17°N. J. Geophys. Res., 100, 2239–2259.
    [Google Scholar]
  57. Schmitt, T., Mitchell, N.C. & Ramsay, A.T.S. (2008) Characterizing uncertainties for quantifying bathymetry change between time‐separated multibeam echo‐sounder surveys. Continental Shelf Res., 28, 1166–1176.
    [Google Scholar]
  58. Shaw, P.R. & Smith, D.K. (1990) Robust description of statistically heterogeneous seafloor topography through its slope distribution. J. Geophys. Res., 95, 8705–8722.
    [Google Scholar]
  59. Shen, Y., Forsyth, D.W., Scheirer, D.S. & Macdonald, K.C. (1993) 2 forms of volcanism – implications for mantle flow and off‐axis crustal production on the west flank of the southern East Pacific Rise. J. Geophys. Res., 98, 17875–17889.
    [Google Scholar]
  60. Smith, D.K. & Cann, J. (1992) The role of seamount volcanism in crustal construction at the Mid‐Atlantic Ridge (24°N‐30°N). J. Geophys. Res., 97, 1645–1658.
    [Google Scholar]
  61. Smith, D.P., Ruiz, G., Kvitek, R. & Iampietro, P.J. (2005) Semiannual patterns of erosion and deposition in the supper Monterey Canyon from serial multibeam bathymetry. Geol. Soc. Am. Bull., 117, 1123–1133.
    [Google Scholar]
  62. Smith, M.J. & Clark, C.D. (2005) Methods for the visualisation of digital elevation models for landform mapping. Earth Surf. Process. Landforms, 30, 885–900.
    [Google Scholar]
  63. Smith, W.H.F. & Sandwell, D. (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 1956–1962.
    [Google Scholar]
  64. Smith, W.H.F. & Sandwell, D. (2004) Conventional bathymetry, bathymetry from space, and geodetic altimetry. Oceanography, 17, 8–23.
    [Google Scholar]
  65. Sparkes, R., Tilmann, F., Hillier, J., Hovius, N. & Jeffrey, L. (2008) Topographic controls on the rupture area of great subduction earthquakes. Geophys. Res. Abs., 10, EGU2008‐A‐04035.
    [Google Scholar]
  66. Watts, A.B. & Masson, D. (2001) New sonar evidence for recent catastrophic collapses of the north flank of Tenerife, Canary Islands. Bull. Volcanol., 63, 8–19.
    [Google Scholar]
  67. Watts, A.B. & Zhong, S. (2002) Constraints on the dynamics of mantle plumes from uplift of the Hawaiian Islands. Geophys. J. Int., 142, 855–875.
    [Google Scholar]
  68. Wessel, P. (1993) Observational constraints on models of the Hawaiian hot spot swell. J. Geophys. Res., 98, 16095–16104.
    [Google Scholar]
  69. Wessel, P. (1998) An empirical method for optimal robust regional‐residual separation of geophysical data. Math. Geol., 30, 391–408.
    [Google Scholar]
  70. White, S.M., Macdonald, K.C. & Haymon, R.M. (2000) Basaltic lava domes, lava lakes and volcanic segmentation on the East Pacific Rise. J. Geophys. Res., 105, 23519–23536.
    [Google Scholar]
  71. Willgoose, G. & Hancock, G. (1998) Revisiting the hypsometric curve as an indicator of form and process in transport limited catchments. Earth Surf. Process. Landforms, 23, 611–638.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2008.00387.x
Loading
  • Article Type: Editorial

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error