1887
Volume 11 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

In this paper a systematic, semi‐empirical comparison is presented between two‐dimensional geo‐electric models and their inversion images, obtained by using five different electrical resistivity arrays and an optimized Stummer configuration. Eight different models (more or less in order of growing complexity) are studied and both noise‐free and noisy data cases are considered. The results show that (1) the quality of the inversion images obtained with traditional arrays depends significantly on the model and on the noise level, (2) among the traditional arrays it is definitely the dipole‐dipole array that provides inversion images mostly similar to the geoelectric models, (3) the inversion images obtained by using the optimized Stummer configuration are even more similar to the original geoelectric model than those obtained by the dipole‐dipole array. It means that the optimized Stummer array is even better than the best traditional array, the dipole‐dipole array, especially in the deepest part of the inversion images. We conclude that in a general field situation the Stummer configuration is good enough for not being forced to search specific configurations. As presented, optimization procedures, involving null arrays could even further improve the quality of the inversion images obtained by using the Stummer configuration.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2012058
2012-10-01
2024-04-26
Loading full text...

Full text loading...

References

  1. Advanced Geosciences, Inc
    Advanced Geosciences, Inc . 2006. Instruction manual for EarthImager 2D, Version 2.1.7, Resistivity and IP inversion software.
    [Google Scholar]
  2. AlpinL.M., BerdichevskiiM.N., VedrintsevG.A. and ZagarmistrA.M.1966. Dipole methods for measuring earth conductivity, Consultants Bureau, New York, p. 302.
    [Google Scholar]
  3. AthanasiouE.N., TsourlosP.I., PapazachosC.B. and TsokasG.N.2007. Combined weighted inversion of electrical resistivity data arising from different data types. Journal of Applied Geophysics62, 124–140.
    [Google Scholar]
  4. BlomeM., MaurerH. and GreenhalghS.2011. Geoelectric experimental design – Efficient acquisition and exploitation of complete pole‐bipole data sets. Geophysics76(1), F15–F26.
    [Google Scholar]
  5. ButlerD.K.2005. Near‐Surface Geophysics. SEG, Tulsa, Oklahoma, USA, p. 355.
    [Google Scholar]
  6. CandansayarM.E.2008. Two‐dimensional individual and joint inversion of three‐ and four‐electrode array DC resistivity data. Journal of Geophysics and Engineering5, 290–300, doi:10.1088/1742‐2132/5/3/005
    [Google Scholar]
  7. ClarkA.J.1990. Seeing Beneath the Soil. B.T. Batshford Ltd. London, p. 176.
    [Google Scholar]
  8. DahlinT. and ZhouB.2004. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting52, 379–398.
    [Google Scholar]
  9. DeyA. and MorrisonH.F.1979. Resistivity modeling for arbitrarily shaped two‐dimensional structures. Geophysical Prospecting27, 106–136.
    [Google Scholar]
  10. EdwardsL.S.1977. A modified pseudosection for resistivity and induced‐polarization. Geophysics42, 1020–1036.
    [Google Scholar]
  11. FarquharsonC.G. and OldenburgD.W.1998. Non‐linear inversion using general mesures of data misfit and model structure. Geophysical Journal International134, 213–227.
    [Google Scholar]
  12. HennigT., WebberA. and MöllerM.2008. Object oriented focussing of geoelectrical multielectrode measurements. Journal of Applied Geophysics65, 57–64.
    [Google Scholar]
  13. HuebnerK.H. and ThorntonE.A.1995. The Finite Element Method for Engineers. John Wiley and Sons, p. 744.
    [Google Scholar]
  14. KirschR.2006. Groundwater Geophysics. Springer, p. 493.
    [Google Scholar]
  15. KnodelK., KrummelH. and LangeG.2005. Band 3. Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, 2nd ed. Springer, p. 128.
    [Google Scholar]
  16. LinesL.R. and TreitelS.1984. A review of least squares inversion and its applications to geophysical problems. Geophysical Prospecting32, 159–186.
    [Google Scholar]
  17. MartoranaR., FiandacaG., CasasA.P. and CosentinoP.L.2009. Comparative tests on different multi‐electrode arrays using models in near‐surface geophysics. Journal of Geophysics and Engineering6, 1–20.
    [Google Scholar]
  18. NyquistJ.E., PeakeJ. S. and RothM.J.S.2007. Case History; Comparison of an opzimised resistivity array with dipole‐dipole soundings in karst terrain. Geophysics72(4), 139–144.
    [Google Scholar]
  19. OldenburgD.W. and LiY.1999. Estimating depth of investigation in DC resistivity and IP surveys. Geophysics64, 403–416.
    [Google Scholar]
  20. RoyA. and ApparaoA.1971. Depth of investigation in direct current methods. Geophysics36, 943–959.
    [Google Scholar]
  21. StummerP., MaurerH. and GreenA.G.2004. Experimental design: Electrical resistivity data sets that provide optimum subsurface information. Geophysics69(1), 120–139.
    [Google Scholar]
  22. SzalaiS., NovakA. and SzarkaL.2009. Depth of Investigation and Vertical Resolution of Surface Geoelectric Arrays. Journal of Environmental and Engineering Geophysics14(1), 15–23.
    [Google Scholar]
  23. SzalaiS., NovakA. and SzarkaL.2011. Which geoelectric array sees the deepest in noisy environment? Depth of detectability values of multi‐electrode systems over various two‐dimensional models. Physics and Chemistry of the Earth36, 1398–1404, doi:10.1016/j.pce.2011.01.008
    [Google Scholar]
  24. SzalaiS. and SzarkaL.2008a. On the classification of surface geoelec‐tric arrays. Geophysical Prospecting56, 159–175.
    [Google Scholar]
  25. SzalaiS. and SzarkaL.2008b. Parameter sensitivity maps of surface geoelectric arrays. Part 1: Linear arrays. Acta Geodaetica et Geophysica Hungarica43, 419–437.
    [Google Scholar]
  26. SzalaiS. and SzarkaL.2008c. Parameter sensitivity maps of surface geoelectric arrays. Part 2: Nonlinear and focussed arrays. Acta Geodaetica et Geophysica Hungarica43, 439–447.
    [Google Scholar]
  27. SzalaiS. and SzarkaL.2011. New perspectives for two‐dimensional multielectrode measurements, on basis of once‐developed geoelectric arrays. Journal of Applied Geophysics75, 1–8, doi: 10.1016/j.jap‐ pgeo.2011.06.020
    [Google Scholar]
  28. SzalaiS., SzarkaL., MarquisG., SailhacP., KaikkonenP. and LahtiI.2004. Co‐linear null arrays in geoelectrics. IAGA WG 1.2 on Electromagnetic Induction in the Earth. Proceedings of the 17th Workshop, http://www.emindia2004.org
    [Google Scholar]
  29. SzalaiS., SzarkaL., PrácserL., BoschF., MullerI. and TurbergP.2002. Geoelectric mapping of near‐surface karstic fractures by using null arrays. Geophysics67, 1769–1778.
    [Google Scholar]
  30. TarantolaA.1987. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Elsevier.
    [Google Scholar]
  31. Van NostrandR.G. and CookK.L.1966. Interpretation of resistivity data. Geological Survey Professional Paper 499, United States Government Printing Office, Washington, p. 310.
    [Google Scholar]
  32. WardS.H.1990. Geotechnical and environmental geophysics, Vol. I. Review and tutorial. SEG, Tulsa, Oklahoma, p. 389.
    [Google Scholar]
  33. ZhdanovM.S. and KellerG.V.1993. The Geoelectrical Methods in Geophysical Exploration. Elsevier, p. 873.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2012058
Loading
/content/journals/10.3997/1873-0604.2012058
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error