1887
Volume 25, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

A three‐dimensional quantitative stratigraphic forward model is employed to investigate the controls leading to the Messinian events in the lacustrine Pannonian Basin of Central Paratethys, and the link between the Messinian salinity crisis in the Mediterranean and the late Miocene‐Pliocene stratigraphy of the Pannonian Basin. Subsurface geological data show that a prominent unconformity surface formed during Messinian time in the Pannonian Basin associated with a sudden forced regression, abrupt basinward shift of facies and a subsequent, prolonged lowstand normal regression. The lowstand prograding series filled up the shallow basin fast, while, at the same time, the marginal areas of the basin were subject to tectonic inversion. The Dionisos program used in this research is built on a nonlinear water‐driven sediment diffusion process, and it employs multiple sediment classes, basin flexure and compaction. Four different scenarios were built in the experiments to test possible basin histories with different rates and timing of tectonic inversion. Each scenario was modelled in two versions: including and not including a lake‐level fall in the Messinian. The results confirm that the Pannonian Basin in the study area has undergone a tectonic inversion since the Messinian, although the exact rates of uplift at different locations remain uncertain. The unconformity and the observed stratigraphic architecture and facies pattern could be modelled adequately only in the versions that applied a Messinian lake‐level fall. Our research concludes that the Messinian unconformity in the Pannonian Basin was caused by an absolute lake‐level drop, likely linked to the desiccation of the Mediterranean, followed by subsidence and normal regression in the basin centre and concomitant tectonic inversion and uplift along the basin margins.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2012.00553.x
2012-05-28
2024-04-23
Loading full text...

Full text loading...

References

  1. Alzaga‐Ruiz, H., Granjeon, D., Lopez, M., Seranne, M. & Roure, F. (2009) Gravitational collapse and Neogene sediment transfer across the western margin of the Gulf of Mexico: insights from numerical models. Tectonophysics, 470, 21–41.
    [Google Scholar]
  2. Bartol, J. & Govers, R. (2009) Flexure due to the Messinian‐Pontian sea level drop in the Black Sea. Geochem. Geoph. Geosyst., 10, Q10013, doi: 10.1029/2009GC002672.
    [Google Scholar]
  3. Baum, G.R. & Vail, P.R. (1988) Sequence stratigraphic concepts applied to Paleogene outcrops, Gulf and Atlantic basins. In: Sea Level Changes: An Integrated Approach (Ed. by WilgusC.K. , HastingsB.S. , KendallC.G.St.C. , H.W.Posamentier , RossC.A. & Van WagonerJ.C. ) Soc. Econom. Palaeontol. Mineralog. Spec. Publ., 42, 309–327.
    [Google Scholar]
  4. Begin, Z.B., Meyer, D.F. & Schumm, S.A. (1981) Development of longitudinal profiles of alluvial channels in response to base‐level lowering. Earth Surf. Proc. Landf., 6, 49–68.
    [Google Scholar]
  5. Bérczi, I. (1988) Preliminary sedimentological investigations of a Neogene depression. In: The Pannonian Basin: A Study in Basin Evolution (Ed. by RoydenL.H. & HorváthF. ) Am. Assoc. Petrol. Geol. Mem., 45, 107–116.
    [Google Scholar]
  6. Bernal, A. & Hardy, S. (2002) Syn‐tectonic sedimentation associated with three‐dimensional fault‐ben fold structures: a numerical approach. J. Struct. Geol., 24, 609–635.
    [Google Scholar]
  7. Bertoni, C. & Cartwright, J.A. (2006) Controls on the basinwide architecture of late Miocene (Messinian) evaporites on the Levant margin (Eastern Mediterranean). Sed. Geol., 188–189, 93–114.
    [Google Scholar]
  8. Bertoni, C. & Cartwright, J.A. (2007) Major erosion at the end of the Messinian Salinity Crisis: evidence from the Levant Basin, Eastern Mediterranean. Basin Res., 19, 1–18.
    [Google Scholar]
  9. Bhattacharya, J.P. & MacEachern, J.A. (2009) Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. J. Sediment. Res., 79, 184–209.
    [Google Scholar]
  10. Bitzer, K. & Salas, R. (2002) SIMSAFADIM: three‐dimensional simulation of stratigraphic architecture and facies distribution modeling of carbonate sediments. Comp. Geosc., 28, 1177–1192.
    [Google Scholar]
  11. Blanc, P.‐L. (2006) Improved modelling of the Messinian Salinity Crisis and conceptual implications. Palaeogeog. Palaeoclim. Palaeoecol., 238, 349–372.
    [Google Scholar]
  12. Bosence, D.W.J. & Waltham, D.A. (1990) Computer modeling the internal architecture of carbonate platforms. Geology, 18, 26–30.
    [Google Scholar]
  13. Burgess, P.M., Lammers, H., van Oosterhout, C. & Granjeon, D. (2006) Multivariate sequence stratigraphy: tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios, and conditional frequency maps. Am. Assoc. Petrol. Geol. Bull., 90, 1883–1901.
    [Google Scholar]
  14. Carson, M.A. & Kirkby, M.J. (1972) Hillslope Form and Process. Cambridge University Press, Cambridge.
    [Google Scholar]
  15. Cattaneo, A. & Steel, R.J. (2003) Transgressive deposits: a review of their variability. Earth Sci. Rev., 62, 187–228.
    [Google Scholar]
  16. Catuneanu, O. (2006) Principles of Sequence Stratigraphy. Elsevier, Amsterdam.
    [Google Scholar]
  17. Catuneanu, O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, P.G., Fielding, C.R., Fisher, W.L., Galloway, W.E., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.St.C., Macurda, B., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E. & Winker, C. (2009) Towards the standardization of sequence stratigraphy. Earth Sci. Rev., 92, 1–33.
    [Google Scholar]
  18. Catuneanu, O., Galloway, W.E., Kendall, C.G.St.C., Miall, A.D., Posamentier, H.W., Strasser, A. & Tucker, M.E. (2011) Sequence stratigraphy: methodology and nomenclature. Newsletters on Stratigraphy, v., 44/3, 173–245.
    [Google Scholar]
  19. Chalaron, E., Mugnier, J.‐L., Sassi, W. & Mascle, G. (1996) Tectonics, erosion and sedimentation in an overthrust system: a numerical approach. Comp. Geosc., 22, 117–138.
    [Google Scholar]
  20. CIESM
    CIESM (2008) The Messinian salinity crisis from mega‐deposits to microbiology: A Consensus Report (Ed. by F.Briand ), CIESM Workshop Monograph, 33, pp. 168, Monaco.
    [Google Scholar]
  21. Cita, M.B. (1982) The Messinian salinity crisis in the Mediterranean: a review. In: Alpine‐Mediterranean Geodynamics (Ed. by H.Berckhemer & K.J.Hsü ) Geodyn. Ser., 7, 113–140. American Geophysical UnionWashington, DC.
    [Google Scholar]
  22. Cita, M.B. (1991) Development of a scientific controversy. In: Controversies in Modern Geology; Evolution of Geological Theories in Sedimentology, Earth History and Tectonics (Ed. by D.V.Mueller , J.A.McKenzie & H.Weissert ), pp. 13–23. Academic Press, London.
    [Google Scholar]
  23. Cita, M.B. & Ryan, W.B.F. (1978) Messinian erosional surfaces in the Mediterranean. Mar. Geol., 27, 3–4.
    [Google Scholar]
  24. Clauzon, G., Suc, J.‐P., Popescu, S.‐M., Marunteanu, M., Rubino, J.‐L., Marinescu, F. & Melintes, M.C. (2005) Influence ofMediterranean sealevel changes on the Dacic Basin (Eastern Paratethys) during the late Neogene: the Mediterranean Lago Mare facies deciphered. Basin Res., 17, 437–462.
    [Google Scholar]
  25. Clevis, Q. (2003) Three‐dimensional modeling of thrust‐controlled foreland basin stratigraphy. PhD Thesis, Utrecht University, Faculty of Earth Sciences, Utrecht.
    [Google Scholar]
  26. Corradini, D. & Biffi, U. (1988) Étude des dinokystes à la limite Messinien‐Pliocène dans la coupe Cava Serredi, Toscane, Italie. Bulletin des Centres de Recherche Exploration‐Production Elf‐Aquitaine, 12, 221–236.
    [Google Scholar]
  27. Coulthard, T.J. (1999) Modelling upland catchment response to Holocene environmental change. PhD Thesis, School of Geography, University of Leeds, UK.
    [Google Scholar]
  28. Coulthard, T.J., Macklin, M.G. & Kirkby, M.J. (2002) A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surf. Process. Landforms, 27, 269–288.
    [Google Scholar]
  29. Csato, I. (1993) Neogene sequences in the Pannonian basin, Hungary. Tectonophysics, 226, 377–400.
    [Google Scholar]
  30. Csato, I., Kendall, C.G.St.C. & Moore, P.D. (2007) The Messinian problem in the Pannonian Basin, Eastern Hungary – insights from stratigraphic simulations. Sed. Geol., 201, 111–140.
    [Google Scholar]
  31. Csontos, L., Márton, E., Wórum, G. & Benkovics, L. (2002) Geodynamics of SW‐Pannonian inselbergs (Mecsek and Villány Mts, SW Hungary): inferences from a complex structural analysis. European Geophysical Union Stephan Mueller Special Publication Series, 3, 227–245.
    [Google Scholar]
  32. Culling, W. (1960) Analytical theory of erosion. J. Geol., 68, 366–344.
    [Google Scholar]
  33. Cziczer, I., Magyar, I., Pipík, R., Böhme, M., Ćorić, S., Bakrač, K., Sütő‐Szentai, M., Lantos, M., Babinszki, E. & Müller, P. (2009) Life in the sublittoral zone of long‐lived Lake Pannon: paleontological analysis of the Upper Miocene Szák Formation, Hungary. Int. J. Earth Sci., 98, 1741–1766.
    [Google Scholar]
  34. Deibert, J.E., Benda, T., Loseth, T., Schellpeper, M. & Steel, R.J. (2003) Eocene clinoform growth in front of a storm‐wave‐dominated shelf, Central Basin, Spitsbergen: no significant sand delivery to deepwater areas. J. Sediment. Res., 73, 546–558.
    [Google Scholar]
  35. Dombrádi, E., Sokoutis, D., Bada, G., Cloetingh, S. & Horváth, F. (2010) Modelling recent deformation of the Pannonian lithosphere: lithospheric folding and tectonic topography. Tectonophysics, 484, 103–118.
    [Google Scholar]
  36. Elston, D.P., Lantos, M. & Hámor, T. (1994) High resolution polarity records and the stratigraphic and magnetostratigraphic correlation of Late Miocene and Pliocene (Pannonian s. l.) deposits of Hungary. In: Basin Analysis in Petroleum Exploration. A Case Study from the Békés Basin, Hungary (Ed. by T.G.Teleki , R.E.Mattick & J.Kókay ), pp. 111–142. Kluwer Academic Publisher, Dordrecht, The Netherlands.
    [Google Scholar]
  37. Fauquette, S., Suc, J.‐P., Bertini, A., Popescu, S.‐M., Warny, S., Taoufiq, N.B., Villa, M.‐J., Chikhi, H., Feddi, N., Subally, D., Clauzon, G. & Ferrier, J. (2006) How much did climate force the Messinian salinity crisis? Quantified climatic conditions from pollen records in the Mediterranean region. Palaeogeog. Palaeoclim. Palaeoecol., 238, 281–301.
    [Google Scholar]
  38. Flemings, P. & Jordan, T. (1990) Stratigraphic modeling of foreland basins: interpreting thrust deformation and lithosphere geology. Geology, 18, 430–434.
    [Google Scholar]
  39. Fodor, L., Csontos, L., Bada, G., Györfi, I. & Benkovics, L. (1999) Tertiary tectonic evolution of the Pannonian Basin system and neighbouring orogens: a new synthesis of paleostress data. In: The Mediterranean Basins: Tertiary Extension within the Alpine Orogen (Ed. by DurandB. , JolivetL. , HorváthF. & SéranneM. ) Geol. Soc. Spec. Publ., 156, 295–334.
    [Google Scholar]
  40. Fodor, L., Bada, G., Csillag, G., Horváth, E., Ruszkiczay‐Rüdiger, Zs., Palotás, K., Síkhegyi, F., Tímár, G., Cloetingh, S. & Horváth, F. (2005) An outline of neotectonic structures and morphotectonics of the western and central Pannonian Basin. Tectonophysics, 410, 15–41.
    [Google Scholar]
  41. Freeman, T.G. (1991) Calculating catchment area with divergent flow based on a regular grid. Comp. Geosc., 17, 413–422.
    [Google Scholar]
  42. Frey Martinez, J., Cartwright, J.A., Burgess, P.M. & Vicente Bravo, J. (2004) 3D seismic interpretation of the Messinian Unconformity in the Valencia Basin, Spain. In: 3D Seismic Technology: Application to the Exploration of Sedimentary Basins (Ed. by DaviesR.J. , CartwrightJ.A. , StewartS.A. & LappinM. ) Geol. Soc. Mem., 29, 91–100.
    [Google Scholar]
  43. Garcia‐Castellanos, D. & Villaseñor, A. (2011) Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc. Nature, 480, doi: 10.1038/nature10651.
    [Google Scholar]
  44. Gargani, J. & Rigollet, C. (2007) Mediterranean sea level variations during the Messinian salinity crisis. Geophys. Res. Lett., 34, L10405.
    [Google Scholar]
  45. Gillet, H., Lericolais, G. & Réhault, J.‐P. (2007) Messinian event in the black sea: evidence of a Messinian erosional surface. Mar. Geol., 244, 142–165.
    [Google Scholar]
  46. Govers, R. (2009) Choking the Mediterranean to dehydration: the Messinian salinity crisis. Geology, 37, 167–170.
    [Google Scholar]
  47. Govers, R., Meijer, P. & Krijgsman, W. (2009) Regional isostatic response to Messinian Salinity Crisis events. Tectonophysics, 463, 109–129.
    [Google Scholar]
  48. Granjeon, D. (1996) Modelisation stratigraphique deterministe – conception et applications d'un modele diffusif 3D multilithologique. Memoires Geosciences Rennes, PhD Dissertation, Geosciences Rennes, Rennes, France.
    [Google Scholar]
  49. Granjeon, D. (2009) 3D stratigraphic modeling of sedimentary basins. AAPG Search and Discovery Article #90090©2009 Am. Assoc. Petrol. Geol. Annual Convention, Denver, Colorado.
  50. Granjeon, D. & Joseph, P. (1999) Concepts and applications of a 3‐D multiple lithology, diffusive model in stratigraphic modeling. In: Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations (Ed. by HarbaughJ.W. , WatneyW.L. , RankeyE.C. , SlingerlandR. & GoldsteinR.H. ) Soc. Sediment. Geol. Spec. Publ., 62, 197–210.
    [Google Scholar]
  51. Granjeon, D. & Wolf, S. (2007) 3D stratigraphic modeling in complex tectonics area. AAPG Search and Discover Article #90063©2007 Am. Assoc. Petrol. Geol. Annual Convention, Long Beach, California.
  52. Gratacos, O., Bitzer, K., Cabrera, L. & Roca, E. (2009) SIMSAFADIM‐CLASTIC: a new approach to mathematical 3D forward simulation modeling for terrigenous and carbonate marine sedimentation. Geologica Acta, 7, 311–322.
    [Google Scholar]
  53. Griffiths, C.M., Dyt, C., Paraschivoiu, E. & Liu, K. (2001) Sedsim in hydrocarbon exploration. In: Geologic Modeling and Simulation (Ed. by D.Merriam & J.C.Davis ), pp. 71–97. Kluwer Academic Publishers, New York.
    [Google Scholar]
  54. Hámor, G., Jámbor, Á. & Pogácsás, Gy. (2001) Paleogeographic/structural evolutionary stages and related volcanism of the Carpathian‐Pannonian region. Acta Geol. Hung., 44/2‐3, 193–222.
    [Google Scholar]
  55. Harbaugh, J.W. & Bonham‐Carter, G. (1970) Computer Simulation in Geology. John Wiley and Sons, New York.
    [Google Scholar]
  56. Harzhauser, M. & Mandic, O. (2008) Neogene lake systems of Central and South‐Eastern Europe: faunal diversity, gradients and interrelations. Palaeogeog. Palaeoclim. Palaeoecol., 260, 417–434.
    [Google Scholar]
  57. Helland‐Hansem, W. & Martinsen, O.J. (1996) Shoreline trajectories and sequences: description of variable depositional‐dip scenarios. J. Sediment. Res., 66, 670–688.
    [Google Scholar]
  58. Helland‐Hansen, W. & Gjelberg, J.G. (1994) Conceptual basis and variability in sequence stratigraphy: a different perspective. Sed. Geol., 92, 31–52.
    [Google Scholar]
  59. Helland‐Hansen, W. & Hampson, G.J. (2009) Trajectory analysis: concepts and applications. Basin Res., 21, 454–483.
    [Google Scholar]
  60. Hilgen, F., Kuiper, K., Krijgsman, W., Snel, E. & van der Laan, E. (2007) Astronomical tuning as the basis for high resolution chronostratigraphy: the intricate history of the Messinian Salinity Crisis. Stratigraphy, 4, 231–238.
    [Google Scholar]
  61. Horváth, F. (1995) Phases of compression during the evolution of the Pannonian Basin and its bearing on hydrocarbon exploration. Mar. Petrol. Geol., 12, 837–844.
    [Google Scholar]
  62. Horváth, F. & Cloetingh, S. (1996) Stress‐induced late‐stage subsidence anomalies in the Pannonian basin. Tectonophysics, 266, 287–300.
    [Google Scholar]
  63. Horváth, F. & Royden, L.H. (1981) Mechanism for the formation of the Intra‐Carpathian basins: a review. Earth Evolution Science, 3, 307–316.
    [Google Scholar]
  64. Horváth, F., Dövényi, P., Szalay, Á. & Royden, L.H. (1988) Subsidence, thermal, and maturation history of the Great Hungarian Plain. In: The Pannonian Basin: A Study in Basin Evolution (Ed. by RoydenL.H. & HorváthF. ) Am. Assoc. Petrol. Geol. Mem., 45, 355–372.
    [Google Scholar]
  65. Horváth, F., Bada, G., Szafián, P., Tari, G., Ádám, A. & Cloetingh, S. (2006) Formation and deformation of the Pannonian Basin: constraints from observational data. In: European Lithosphere Dynamics (Ed. by GeeD.G. & StephensonR.A. ) Geol. Soc. Mem., 32, 191–206.
    [Google Scholar]
  66. Howard, A.D. (1980) Thresholds in river regime. In: The Concept of Geomorphic Thresholds (Ed. by D.Coates & J.Vitek ), pp. 227–258. Allen and Unwin, Boston.
    [Google Scholar]
  67. Hsü, K.L. & Giovanoli, F. (1979) Messinian event in the Black Sea. Palaeogeog. Palaeoclim. Palaeoecol., 29, 75–93.
    [Google Scholar]
  68. Hsü, K.J., Montadert, L., Bernoulli, D., Cita, M.B., Erickson, A., Garrison, R.E., Kidd, R.B., Melieres, F., Müller, C. & Wright, R. (1977) History of the Mediterranean salinity crisis. Nature, 267, 399–403.
    [Google Scholar]
  69. Hunt, D. & Tucker, M. (1992) Stranded parasequences and the forced regressive wedge systems tract: deposition during base level fall. Sedimentary Geology, 81, 1–9.
    [Google Scholar]
  70. Ivanov, D.A., Ashraf, A.R. & Mosbrugger, V. (2007) Late Oligocene and Miocene climate and vegetation in the Eastern Paratethys area (northeast Bulgaria), based on pollen data. Palaeogeog. Palaeoclim. Palaeoecol, 255, 342–360.
    [Google Scholar]
  71. Jámbor, Á. (1989) Review of the geology of the s.l. Pannonian formations of Hungary. Acta Geol. Hung., 32/3‐4, 269–324.
    [Google Scholar]
  72. Johanessen, E.P. & Steel, R.J. (2005) Shelf‐margin clinoforms and prediction of deepwater sands. Basin Res., 17, 521–550.
    [Google Scholar]
  73. Jolivet, L., Augier, R., Robin, C., Suc, J.‐P. & Rouchy, J.M. (2006) Lithospheric‐scale geodynamic context of the Messinian salinity crisis. Sed. Geol., 188–189, 9–33.
    [Google Scholar]
  74. Jordan, T.E. & Flemings, P.B. (1991) Large‐scale architecture, eustatic variation and unsteady tectonism: a theoretical evaluation. J. Geophys. Res., 96, B4, 6681–6699.
    [Google Scholar]
  75. Juhász, G.. (1998) A magyarországi neogén mélymedencék pannónia képződményeinek litosztratigráfiája. In: Occasional Papers of the Geological Institute of Hungary (Ed. by I.Bérczi & Á.Jámbor ) Geol. Inst. Hung., 194, 469–483 (in Hungarian with English summary).
    [Google Scholar]
  76. Juhász, Gy., Pogácsás, Gy., Magyar, I. & Vakarcs, G. (2006) Integráltsztratigráfiai és fejlődéstörténeti vizsgálatok az Alföld pannóniai s.l. rétegsorában. Földtani Közlöny, 136, 51–86 (in Hungarian with English Abstract).
    [Google Scholar]
  77. Juhász, Gy., Pogácsás, Gy., Magyar, I. & Vakarcs, G. (2007) Tectonic versus climatic control on the evolution of fluvio‐deltaic systems in a lake basin, Eastern Pannonian Basin. Sed. Geol., 202, 72–95.
    [Google Scholar]
  78. Karátson, D., Németh, K., Székely, B., Ruszkiczay‐Rüdiger, Zs. & Pécskay, Z. (2006) Incision of a river curvature due to exhumed Miocene volcanic landforms: Danube Bend, Hungary. Int. J. Earth Sci., 95, 929–944.
    [Google Scholar]
  79. Kendall, C.G.St.C., Whittle, G.L., Fulthorpe, C., Moore, Ph., Hickey, T.D., Cannon, R. & Hellmann, D. (1995) Geometric responses in Neogene sediments of offshore New Zealand: simulated as products of changes in depositional base level driven by eustasy and/or tectonics. In: Sequence Stratigraphy and Depositional Response to Eustatic, Tectonic and Climatic Forcing (Ed. by B.U.Haq ), pp. 113–136. Kluwer Academic Publishers, New York.
    [Google Scholar]
  80. Kenyon, P.M. & Turcotte, D.L. (1985) Morphology of a delta prograding by bulk sediment transport. Geol. Soc. Am. Bull., 96, 1457–1465.
    [Google Scholar]
  81. Kováč, M., Baráth, I., Fordinál, K., Grigorovich, A.S., Halásová, E., Hudáčková, N., Joniak, P., Sabol, M., Slamková, M., Sliva, L. & Vojtko, R. (2006) Late Miocene to Early Pliocene sedimentary environments and climatic changes in the Alpine–Carpathian–Pannonian junction area: a case study from the Danube Basin northern margin (Slovakia). Palaeogeog. Palaeoclim. Palaeoecol, 238, 32–52.
    [Google Scholar]
  82. Krijgsman, W., Hilgen, F.J., Raffi, I., Sierrom, F.J. & Wilson, D.S. (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652–655.
    [Google Scholar]
  83. Krijgsman, W., Fortuin, A.R., Hilgen, F.J. & Sierro, F.J. (2001) Astrochronology for the Messinian Sorbas Basin (SE Spain) and orbital (precessional) forcing for evaporite cyclicity. Sed. Geol., 140, 43–60.
    [Google Scholar]
  84. Krijgsman, W., Gaboardi, S., Hilgen, F.J., Iaccarino, S., de Kaenel, E. & van der Laan, E. (2004) Revised astrochronology for the Ain el Beida section (Atlantic Morocco); no glacio‐eustatic control for the onset of the Messinian salinity crisis. Stratigraphy, 1, 87–101.
    [Google Scholar]
  85. Lawrence, D., Doyle, M. & Aigner, T. (1990) Stratigraphic simulation of sedimentary basins: concepts and calibration. Am. Assoc. Petrol. Geol. Bull., 74, 273–295.
    [Google Scholar]
  86. Leever, K.A., Matenco, L., Rabagia, T., Cloetingh, S., Krijgsman, W. & Stoica, M. (2009) Messinian sea level fall in the Dacic Basin (Eastern Paratethys): palaeogeographical implications from seismic sequence stratigraphy. Terra Nova, 22, 12–17.
    [Google Scholar]
  87. Leever, K.A., Martenco, L., Garcia‐Castellanos, D. & Cloetingh, S.A.P.L. (2011) The evolution of the Danube gateway between Central and Eastern Paratethys (SE Europe): insight from numerical modelling of the causes and effects of connectivity between basins and its expression in the sedimentary record. Tectonophysics, 502, 175–195.
    [Google Scholar]
  88. Ligtenberg, H. & Neves, F. (2008) Integrating disciplines for petroleum system analysis – from seismic interpretation to stratigraphic and basin modeling. Petrol. Geosci., 14, 219–221.
    [Google Scholar]
  89. Lofi, J., Gorini, C., Berné, S., Clauzon, G., Tadeu Dos Reis, A., Ryan, W.B.F. & Steckler, M.S. (2005) Erosional processes and paleoenvironmental changes in the Western Gulf of Lions (SW France) during the Messinian salinity crisis. Mar. Geol., 217, 1–30.
    [Google Scholar]
  90. Lofi, J., Deverchere, J., Gaullier, V., Gillet, H., Gorini, C., Guennoc, P., Loncke, L., Maillard, A., Sage, F., Thinon, I., Capron, A. & Obone Zue Obame, E. (2008) The Messinian salinity crisis in the offshore domain: an overview of our knowledge through seismic profile interpretation and multi‐site approach. In: The Messinian Salinity Crisis from mega‐deposits to microbiology: A Consensus Report (Ed. by F.Briand ), CIESM Workshop Monograph, 33, 83–90, Monaco.
    [Google Scholar]
  91. Londeix, L., Benzakour, M., Suc, J.‐P. & Turon, J.‐L. (2007) Messinian palaeoenvironments and hydrology in Sicily (Italy): the dinoflagellate cyst record. Geobios, 40, 233–250.
    [Google Scholar]
  92. Loutit, T.S., Hardenbol, J., Vail, P.R. & Baum, G.R. (1988) Condensed sections: the key to age determination and correlations of continental margin sequences. In: Sea Level Changes: An Integrated Approach (Ed. by WilgusC.K. , HastingsB.S. , KendallC.G.St.C. , PosamentierH.W. , RossC.A. & Van WagonerJ.C. ) Soc. Econom. Palaeontol. Mineralog. Spec. Publ., 42, 183–213.
    [Google Scholar]
  93. Magyar, I. & Sztanó, O. (2008) Is there a Messinian unconformity in the central Paratethys?Stratigraphy, 5, 245–255.
    [Google Scholar]
  94. Magyar, I., Geary, D.H. & Müller, P. (1999) Paleogeographic evolution of the Late Miocene Lake Pannon in central Europe. Palaeogeog. Palaeoclim. Palaeoecol, 147, 151–167.
    [Google Scholar]
  95. Martinez, P.A. & Harbaugh, J.W. (1993) Simulating Nearshore Environments. Computer methods in the Geosciences, 12. Pergamon Press, Oxford.
    [Google Scholar]
  96. Márton, E., Jelen, B., Tomljenović, B., Pavelić, D., Poljak, M., Márton, P., Avanić, R. & Pamić, J. (2006) Late Neogene counterclockwise rotation in the SW part of the Pannonian Basin. Geol. Carpath., 57, 41–46.
    [Google Scholar]
  97. Meulenkamp, J.E. & Sissingh, W. (2003) Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri‐Tethys platforms and the intermediate domains of the African‐Eurasian convergent plate boundary zone. Palaeogeog. Palaeoclim. Palaeoecol., 196, 209–228.
    [Google Scholar]
  98. Mulder, T. & Alexander, J. (2001) The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48, 269–299.
    [Google Scholar]
  99. Murray, A.B. & Paola, C. (1994) A cellular model of braided rivers. Nature, 371, 54–57.
    [Google Scholar]
  100. Murray, A.B. & Paola, C. (1997) Properties of a cellular braided‐stream model. Earth Surf. Proc. Landf., 22, 1001–1025.
    [Google Scholar]
  101. Muto, T. & Steel, R.J. (2002) Role of autoretreat and A/S changes in the understanding of deltaic shoreline trajectory: a semi‐quantitative approach. Basin Res., 14, 303–318.
    [Google Scholar]
  102. Overeem, I., Syvitski, J.P.M. & Hutton, E.W.H. (2005) Three‐dimensional numerical modeling of deltas. In: River Deltas: Concepts, Models and Examples (Ed. by BhattacharyaJ.P. & GiosanL. ) Soc. Sediment. Geol. Spec. Publ., 83, 13–30.
    [Google Scholar]
  103. Paola, C., Heller, P.L. & Angevine, C.L. (1992) The large‐scale dynamics of grain‐size variation in alluvial basins, 1: theory. Basin Res., 4, 73–90.
    [Google Scholar]
  104. Parker, G., Poala, C., Whipple, K.X. & Mohrig, D. (1998) Alluvial fans formed by channelized fluvial and sheet flow: I: theory. J.Hydraulic Eng., 124, 985–995.
    [Google Scholar]
  105. Pelletier, J.D. (2004) Persistent drainage migration in a numerical landscape evolution model. Geophys. Res. Lett., 31, L20501.
    [Google Scholar]
  106. Petter, A.L. & Steel, R.J. (2006) Hyperpycnal flow variability and slope organization on an Eocene shelf margin, Central Basin, Spitsbergen. Am. Assoc. Petrol. Geol. Bull., 90, 1451–1472.
    [Google Scholar]
  107. Popescu, S.‐M., Dalesme, F., Jouannic, G., Escarguel, G., Head, M.J., Melinte, M.C., Sütő‐Szentai, M., Bakrac, K., Clauzon, G. & Suc, J.‐P. (2009) Galeacysta etrusca complex, dinoflagellate cyst marker of Paratethyan influxes into the Mediterranean sea before and after the peak of the Messinian salinity crisis. Palynology, 33, 105–134.
    [Google Scholar]
  108. Popov, S.V., Shcherba, I.G., Ilyina, L.B., Nevesskaya, L.A., Paramonova, N.P., Khondkarian, S.O. & Magyar, I. (2006) Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeog. Palaeoclim. Palaeoecol., 238, 91–106.
    [Google Scholar]
  109. Porębski, S.J. & Steel, R.J. (2003) Shelf‐margin deltas: their stratigraphic significance and relation to deepwater sands. Earth Sci. Rev., 62, 283–326.
    [Google Scholar]
  110. Posamentier, H.W. & Allen, G.P. (1999) Siliciclastic Sequence Stratigraphy: Concepts and Applications. Volume 7 of Concepts in sedimentology and paleontology. SEPM (Society for Sedimentary Geology), Tulsa, Oklahoma.
    [Google Scholar]
  111. Postma, G. & Van den Berg van Saparoea, A.‐P. (2007) Flume modelling of river‐delta systems at geological relevant time scales: templates for sea‐level induced flux. In: Analogue and Numerical Forward Modelling of Sedimentary Systems; from Understanding to Prediction (Ed. by de BoerP.L. , PostmaG. , van der ZwanC.J. , BurgessP.M. & KuklaP. ) Int. Assoc. Sedim. Spec. Publ., 40, 191–206.
    [Google Scholar]
  112. Postma, G., Kleinhans, M.G., Meijer, P.T. & Eggenhuisen, J.T. (2008) Sediment transport in analogue flume models compared with real‐world sedimentary systems: a new look at scaling evolution of sedimentary systems in a flume. Sedimentology, 55, 1541–1557.
    [Google Scholar]
  113. Rabineau, M., Berné, S., Aslanian, D., Olivet, J.‐L., Joseph, P., Guillocheau, F., Bourillet, J.‐F., Ledrezen, E. & Granjeon, D. (2005) Sedimentary sequences in the Gulf of Lion: a record of 100,000 years climatic cycles. Mar. Petrol. Geol., 22, 775–804.
    [Google Scholar]
  114. Rivenaes, J.C. (1992) Application of a dual‐lithology, depth‐dependent diffusion equation in stratigraphic simulation. Basin Res., 4, 133–146.
    [Google Scholar]
  115. Roering, J.J., Kirchner, J.W. & Dietrich, W.E. (1999) Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resour. Res., 35, 853–870.
    [Google Scholar]
  116. Roveri, M., Bassetti, M.A. & Ricci Lucchi, F. (2001) The Mediterranean Messinian salinity crisis: an Apennine foredeep perspective. Sed. Geol., 140, 201–214.
    [Google Scholar]
  117. Roveri, M., Manzi, V., Ricci Lucchi, F. & Rogledi, S. (2003) Sedimentary evolution of the Vena del Gesso basin (Northern Apennines, Italy): implications for the onset of the Messinian salinity crisis. Geol. Soc. Am. Bull., 115, 387–405.
    [Google Scholar]
  118. Roveri, M., Lugli, S., Manzi, V. & Schreiber, B.C. (2008) The shallow‐ to deep‐water record of the Messinian Salinity Crisis: new insights from Sicily, Calabria and Apennine basins. In: The Messinian Salinity Crisis from mega‐deposits to microbiology: A Consensus Report (Ed. by F.Briand ), CIESM Workshop Monograph, 33, 73–82, Monaco.
    [Google Scholar]
  119. Royden, L.H. (1988) Late Cenozoic tectonics of the Pannonian Basin system. In: The Pannonian Basin: A Study in Basin Evolution (Ed. by RoydenL.H. & HorváthF. ) Am. Assoc. Petrol. Geol. Mem., 45, 27–48.
    [Google Scholar]
  120. Royden, L.H., Horváth, F. & Burchfiel, B.C. (1982) Transform faulting, extension and subduction in the Carpathian‐Pannonian region. Geol. Soc. Am. Bull., 73, 717–725.
    [Google Scholar]
  121. Rumpler, J. & Horváth, F. (1988) Some representative seismic reflection lines from the Pannonian Basin and their structural interpretation. In: The Pannonian Basin: A Study in Basin Evolution (Ed. by RoydenL.H. & HorváthF. ) Am. Assoc. Petrol. Geol. Mem., 45, 153–169.
    [Google Scholar]
  122. Ryan, W.B.F. (2009) Decoding the Mediterranean salinity crisis. Sedimentology, 56, 95–136.
    [Google Scholar]
  123. Somme, T.O., Helland‐Hansen, W. & Granjeon, D. (2009) Impact of eustatic amplitude variations on shelf morphology, sediment dispersal, and sequence stratigraphic interpretation: icehouse versus greenhouse systems. Geology, 37, 587–590.
    [Google Scholar]
  124. Sacchi, M. & Müller, P. (2004) Orbital cyclicity and astronomical calibration of the upper Miocene continental succession cored at the Iharosberény‐I well site, Western Pannonian Basin, Hungary. In: Cyclostratigraphy: Approaches and Case Histories (Ed. by D'ArgenioB. , FischerA.G. , Premoli SilvaI. , WeissertH. & FerreriV. ) Soc. Sediment. Geol. Spec. Publ., 81, 275–294.
    [Google Scholar]
  125. Sacchi, M., Horváth, F. & Magyari, O. (1999) Role of unconformitybounded units in the stratigraphy of the continental record: a case study from the Late Miocene of the western Pannonian Basin, Hungary. In: The Mediterranean Basins: Tertiary Extension within the Alpine Orogen (Ed. by DurandB. , JolivetL. , HorváthF. & SéranneM. ) Geol. Soc. Spec. Publ., 156, 357–390.
    [Google Scholar]
  126. Stampfli, G.M. & Höcker, C.F.W. (1989) Messinian palaeorelief from 3‐D seismic survey in the Tarraco concession area (Spanish Mediterranean Sea). Geol. Mijnbouw, 68, 201–210.
    [Google Scholar]
  127. Steppuhn, A., Micheels, A., Geiger, G. & Mosbrugger, V. (2006) Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed‐layer ocean model with adjusted flux correction. Palaeogeog. Palaeoclim. Palaeoecol., 238, 399–423.
    [Google Scholar]
  128. Suc, J.‐P., Couto, D.D., Melinte‐Dobrinescu, M.C., Macalet, R., Quillévéré, F., Clauzon, G., Csato, I., Rubino, J.‐P. & Popescu, S.M. (2011) The Messinian salinity crisis in the Dacic Basin (SW Romania) and early Zanclean Mediterranean – Eastern Paratethys high sea‐level conncection. Palaeogeog. Palaeoclim. Palaeoecol., 310, 256–272.
    [Google Scholar]
  129. Syvitski, J.P.M. & Hutton, E.W.H. (2001) 2D SEDFLUX 1.0: an advanced process‐response numerical model for the fill of marine sedimentary basins. Comp. Geosc., 27, 731–754.
    [Google Scholar]
  130. Syvitski, J.P.M., Peckham, S.D., Hilberman, R. & Mulder, T. (2003) Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sed. Geol., 162, 5–24.
    [Google Scholar]
  131. Szalay, Á. & Szentgyörgyi, K. (1988) A method for lithogenetic subdivision of Pannonian (s.l.) sedimentary rocks. In: The Pannonian Basin: A Study in Basin Evolution (Ed. by RoydenL.H. & HorváthF. ) Am. Assoc. Petrol. Geol. Mem., 45, 89–105.
    [Google Scholar]
  132. Szuromi‐Korecz, A., Sütő‐Szentai, M. & Magyar, I. (2004) Biostratigraphic revision of the Hód‐I well: Hungary's deepest borehole failed to reach the base of the upper Miocene Pannonian stage. Geol. Carpath., 55, 475–485.
    [Google Scholar]
  133. Timár, G., Sümegi, P. & Horváth, F. (2005) Late Quaternary dynamics of the Tisza River: evidence of climatic and tectonic controls. Tectonophysics, 410, 97–110.
    [Google Scholar]
  134. Tucker, G.E. (2004) Drainage basin sensitivity to tectonic and climatic forcing: implications of a stochastic model for the role of entrainment and erosion thresholds. Earth Surf. Proc. Landf., 29, 401–422.
    [Google Scholar]
  135. Tucker, G.E. & Hancock, G.R. (2010) Modelling landscape evolution. Earth Surf. Proc. Landf., 35, 28–50.
    [Google Scholar]
  136. Tucker, G.E. & Slingerland, R. (1994) Erosional dynamics, flexural isostasy, and long‐lived escarpments: a numerical modeling study. J. Geoph. Res., 10, 12 229–12 243.
    [Google Scholar]
  137. Urgeles, R., Camerlenghi, A., Garcia‐Castellanos, D., De Mol, B., Garcés, M., Vergés, J., Haslam, I. & Hardman, M. (2011) New constraints on the Messinian sealevel drawdown from 3D seismic data of the Ebro Margin, western Mediterranean. Basin Res., 23, 123–145.
    [Google Scholar]
  138. Vail, P.R., Mitchum, R.M.Jr, Todd, R.G., Widmier, J.M., Thompson, S.III, Sangree, J.B., Bubb, J.N. & Hatlelid, W.G. (1977) Seismic stratigraphy and global changes of sea‐level. In: Seismic Stratigraphy – Applications to Hydrocarbon Exploration (Ed. by PaytonC.E. ) Am. Assoc. Petrol. Geol. Mem., 26, 49–212.
    [Google Scholar]
  139. Vakarcs, G., Vail, P.R., Tari, G., Pogácsás, G., Mattick, R.E. & Szabó, A. (1994) Third‐order Miocene–Pliocene depositional sequences in the prograding delta complex of the Pannonian Basin. Tectonophysics, 240, 81–106.
    [Google Scholar]
  140. Van Balen, R.T., Lenkey, L., Horváth, F. & Cloetingh, S.A.P.L. (1999) Two‐dimensional modeling of stratigraphy and compaction‐driven fluid flow in the Pannonian Basin. In: The Mediterranean Basins: Tertiary Extension within the Alpine Orogen (Ed. by DurandB. , JolivetL. , HorváthF. & SéranneM. ) Geol. Soc. Spec. Publ., 156, 391–414.
    [Google Scholar]
  141. Warny, S.A. & Wrenn, J.H. (2002) Upper Neogene dinoflagellate cyst ecostratigraphy of the Atlantic coast of Morocco. Micropaleontology, 48, 257–272.
    [Google Scholar]
  142. Warny, S.A., Bart, P.J. & Suc, J.‐P. (2003) Timing and progression of climatic, tectonic and glacioeustatic influences on the Messinian salinity crisis. Palaeogeog. Palaeoclim. Palaeoecol, 202, 59–66.
    [Google Scholar]
  143. Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A. & Van Wagoner, J.C. (Eds.), (1988) Sea level changes: an integrated approach. Soc. Econom. Palaeontol. Mineralog. Spec. Publ., 42, 392 p.
    [Google Scholar]
  144. Willgoose, G., Bras, R.L. & Rodiguez‐Iturbe, I. (1991) A coupled channel network growth and hillslope evolution model 1. Theory. Water Resources Research, 27, 1671–1684.
    [Google Scholar]
  145. Windhoffer, G., Bada, G., Nieuwland, D., Wórum, G., Horváth, F. & Cloething, S. (2005) On the mechanics of basin formation in the Pannonian basin: inferences from analogue and numerical modeling. Tectonophysics, 410, 389–415.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2012.00553.x
Loading
/content/journals/10.1111/j.1365-2117.2012.00553.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error