1887
Volume 61, Issue 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Assessment of deep buried basin/basement relationships using geophysical data is a challenge for the energy and mining industries as well as for geothermal or CO storage purposes. In deep environments, few methods can provide geological information; magnetic and gravity data remain among the most informative and cost‐effective methods. Here, in order to derive fast first‐order information on the basement/basin interface, we propose a combination of existing and original approaches devoted to potential field data analysis. Namely, we investigate the geometry (i.e., depth and structure) and the nature of a deep buried basement through a case study SW of the Paris Basin. Joint processing of new high‐resolution magnetic data and up‐to‐date gravity data provides an updated overview of the deep basin.

First, the main structures of the magnetic basement are highlighted using Euler deconvolution and are interpreted in a structural sketch map. The new high‐resolution aeromagnetic map actually offers a continuous view of regional basement structures and reveals poorly known and complex deformation at the junction between major domains of the Variscan collision belt.

Second, Werner deconvolution and an ad hoc post‐processing analysis allow the extraction of a set of magnetic sources at (or close to) the basin/basement interface. Interpolation of these sources together with the magnetic structural sketch provides a Werner magnetic basement map displaying realistic 3D patterns and basement depths consistent with data available in deep petroleum boreholes.

The last step of processing was designed as a way to quickly combine gravity and magnetic information and to simply visualize first‐order petrophysical patterns of the basement lithology. This is achieved through unsupervised classification of suitably selected gravity and magnetic maps and, as compared to previous work, provides a realistic and updated overview of the cartographic distribution of density/magnetization of basement rocks.

Altogether, the three steps of processing proposed in this paper quickly provide relevant information on a deep buried basement in terms of structure, geometry and nature (through petrophysics). Notwithstanding, limitations of the proposed procedure are raised: in the case of the Paris Basin for instance, this study does not provide proper information on Pre‐Mesozoic basins, some of which have been sampled in deep boreholes.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12024
2013-04-17
2024-03-29
Loading full text...

Full text loading...

References

  1. AutranA., LefortJ.P., DebegliaN., EdelJ.B. and VigneresseJ.L.1994. Gravity and magnetic expression of terranes in France and their correlation beneath overstep sequences. In: Pre‐Mesozoïc geology in France and related areas , (ed. J.D.Keppie ), Springer‐Verlag, Berlin Heidelberg .
    [Google Scholar]
  2. BaliaR., FaisS., KlingeleE., MarsonI. and PorcuA.1991. Aeromagnetic constraints on the geostructural interpretation of the southern part of the Sardinian Rift, Italy. Tectonophysics, The European Geotraverse Part 7 195, 347–358.
    [Google Scholar]
  3. BarbosaV.C.F., SilvaJ.B.C. and MedeirosW.E.1999. Stability analysis and improvement of structural index estimation in Euler deconvolution. Geophysics 64, 48–60.
    [Google Scholar]
  4. BayerR., GuillenA. and RoussetD.1988. Réactualisation de l’interprétation de l’AMBP sur la région de Couy‐Sancerre. In: Forage scientifique de Sancerre‐Couy (Cher), données géophysiques préliminaires , (ed. C.Weber ) pp. 167–178. Documents BRGM 138, Orléans, France .
    [Google Scholar]
  5. BellR., StudingerM., KarnerG.D., FinnC. and BlankenshipD.2006. Identifying major sedimentary basins beneath the West Antarctic Ice Sheet from aeromagnetic data analysis. In: Antarctica: Contributions to Global Earth Sciences , (eds D.K.Fütterer et al .), pp. 117–121. Springer, Berlin .
    [Google Scholar]
  6. BoschM., GuillenA. and LedruP.2001. Lithologic tomography: An application to geophysical data from the Cadomian belt of Northern Brittany, France. Tectonophysics 331, 197–228.
    [Google Scholar]
  7. ChantraineJ., AutranA., CavelierC., Alabouvette B., Barféty J.‐C. and Cecca F. 1996. Carte Géologique de la France à L’échelle du Millionième . BRGM (6ème édition), Orléans, France .
    [Google Scholar]
  8. ChateauneufJ.J. and FarjanelG.1989. In: Synthèse géologique des bassins permiens français , (ed. Mémoire du BRGM 128) p. 28. Orléans, France .
    [Google Scholar]
  9. CorpelJ. and DebegliaN.1988. Étude bassin de Paris‐Centre: Réinterprétation des données gravimétriques et magnétiques. Rapport BRGM 88 DT 021 GPH.
  10. DavyB. and WoodR.1994. Gravity and magnetic modelling of the Hikurangi Plateau. Marine Geology 118, 139–151.
    [Google Scholar]
  11. DebegliaN. and CorpelC.1997. Automatic 3‐D interpretation of potential field data using analytic signal derivatives. Geophysics 62, 87–96.
    [Google Scholar]
  12. DebegliaN. and WeberC.1985. Geologic mapping of the basement of the Paris basin (France) by gravity and magnetic data interpretation. In: The Utility of regional gravity and magnetic anomaly maps , (ed. W.J.Hinze ). SEG.
    [Google Scholar]
  13. GaldeanoA. and GuillonJ.C.1988. Interprétation des données magnétiques et gravimétriques. In: Etude de la croûte terrestre par sismique profonde – Profil Nord de la France, structure hercynienne , (eds M.Cazes and G.Toreilles ). Technip.
    [Google Scholar]
  14. GérardA.1971. Apports de la gravimétrie à la connaissance de la tectonique profonde du bassin de Paris. Bulletin du BRGM , 2e série, 2.
    [Google Scholar]
  15. de Gery ChastenetT. and NaudyH. 1957. Sur l’interprétation des anomalies gravimétriques et magnétiques. Geophysical Prospecting 5, 421–448.
    [Google Scholar]
  16. GoussevS.A. and PeirceJ.W.2010. Magnetic basement: Gravity‐guided magnetic source depth analysis and interpretation. Geophysical Prospecting 58, 321–334.
    [Google Scholar]
  17. GuillenA., BayerR., MillionR. and RoussetD.1990. Évolution des hypothèses et modélisations pour l’interprétation de l’anomalie magnétique du bassin de Paris (région de Sancerre). Bulletin de la Societe Géologique de France , VI(5), 739–748.
    [Google Scholar]
  18. GuillenA., CalcagnoP., CourriouxG., JolyA. and LedruP.2008. Geological modelling from field data and geological knowledge, Part II. Modelling validation using gravity and magnetic data inversion. Physics of the Earth and Planetary Interiors 171, 158–169.
    [Google Scholar]
  19. GuillenA. and MenichettiV.1984. Gravity and magnetic inversion with minimization of a specific functional. Geophysics 49, 1354–1360.
    [Google Scholar]
  20. GuillocheauF., RobinC., AllemandP., BourquinS., BraultN., DromartG. et al . 2000. Meso‐Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints. Geodinamica Acta 13(4), 189–245.
    [Google Scholar]
  21. GunnP.J.1997. Quantitative methods for interpreting aeromagnetic data: A subjective review. AGSO Journal of Australian Geology and Geophysics 17, 105–113.
    [Google Scholar]
  22. HansenR.O.2005. 3D multiple‐source Werner deconvolution for magnetic data. Geophysics 70, 45–51.
    [Google Scholar]
  23. HansenR.O. and SimmondsM.1993. Multiple‐source Werner deconvolution. Geophysics 58, 1792–1800.
    [Google Scholar]
  24. HartmanR.R., TeskeyD.J. and FriedbergJ.L.1971. A system for rapid digital aeromagnetic interpretation. Geophysics 36, 891–918.
    [Google Scholar]
  25. HassanH.H., PeirceJ.W., PearsonW.C. and PearsonM.J.1998. Cultural editing of HRAM data, comparison of techniques. Canadian Journal of Exploration Geophysics , n° 1 and 2, 34, 16–22.
    [Google Scholar]
  26. HéritierF. and VilleminJ.1971. Mise en évidence de la tectonique profonde du Bassin de Paris. Bulletin de la Societe Géologique de France 2, 11–30.
    [Google Scholar]
  27. HsuS.‐K., CoppensD. and ShyuC.T.1998. Depth to magnetic source using the generalized analytic signal. Geophysics 63, 1947–1957.
    [Google Scholar]
  28. HuangD.1996. Enhancement of automatic interpretation techniques for recognising potential field sources . PhD thesis, University of Leeds, UK.
  29. JolyA., MarteletG., ChenY. and FaureM.2008. A multidisciplinary study of a syntectonic pluton close to a major lithospheric‐scale fault: Relationships between the Montmarault granitic massif and the Sillon Houiller Fault in the Variscan French Massif Central. Part II: Gravity, aeromagnetic investigations and 3D geologic modelling. Journal of Geophysical Research 113, B01404.
    [Google Scholar]
  30. KeatingP.B.1998. Weighted Euler deconvolution of gravity data. Geophysics 63, 1595–1603.
    [Google Scholar]
  31. KuC.C. and SharpJ.A.1983. Werner deconvolution for automated magnetic interpretation and its refinement using Marquardt's inverse modelling. Geophysics 48, 754–774.
    [Google Scholar]
  32. Le BorgneE. and Le MouelJ.L.1966. La nouvelle carte magnétique de la France. Note IPG n° 15.
  33. LiX.2003. On the use of different methods for estimating magnetic depth. The Leading Edge 22, 1090–1099.
    [Google Scholar]
  34. LorenzC., MégnienC., WeberC., BergeratF., BoulègueJ., BurgJ.P. et al . 1987. Premiers résultats du sondage implanté sur l’anomalie magnétique du bassin de Paris, au sud de Sancerre (Cher), Programme géologie profonde de la France. Comptes Rendus de L’ Académie des Sciences, Paris, série II 305, 1099–1104.
    [Google Scholar]
  35. MarelloL., EbbingJ. and GernigonL.2010. Magnetic basement study in the Barents Sea from inversion and forward modelling. Tectonophysics 493, 153–171.
    [Google Scholar]
  36. MarsonI. and KlingeleE.E.1993. Advantages of using the vertical gradient of gravity for 3‐D interpretation. Geophysics 58, 1588–1595.
    [Google Scholar]
  37. MarteletG., CalcagnoP., GumiauxC., TruffertC., BitriA., GapaisD. and BrunJ.P.2004. Integrated 3D geophysical modelling of the Hercynian Suture Zone in the Champtoceaux area (south Brittany, France). Tectonophysics 382, 117–128.
    [Google Scholar]
  38. MarteletG., DebegliaN. and TruffertC.2002. Updating and validating the French gravity terrain corrections out to a distance of 167 km. Comptes Rendus Geoscience 334, 449–454.
    [Google Scholar]
  39. MarteletG., PajotG. and DebegliaN.2009. Nouvelle carte gravimétrique de la France; RCGF09 – Réseau et Carte Gravimétrique de la France, 2009. Rapport BRGM/RP‐57908‐FR, 77 pp.
  40. MarteletG., SailhacP., MoreauF. and DiamentM.2001. Characterization of geological boundaries using 1‐D wavelet transform on gravity data; Theory and application to the Himalayas. Geophysics 66, 1116–1129.
    [Google Scholar]
  41. MégnienC.1980. Synthèse géologique du Bassin de Paris. Mémoire du BRGM , 102.
    [Google Scholar]
  42. MikhailovV., GaldeanoA., DiamentM., GvishianiA., AgayanS., BogoutdinovS. et al . 2003. Application of artificial intelligence for Euler solutions clustering. Geophysics 68, 168–180.
    [Google Scholar]
  43. MoreauF., GibertD., HolshcneiderM. and SaraccoG.1997. Wavelet analysis of potential fields. Inverse Problems 23, 165–178.
    [Google Scholar]
  44. MushayandebvuM.F., van DrielP., ReidA.B. and FairheadJ.D.1999. Magnetic imaging using extended Euler deconvolution. 69th Annual International Meeting, Society of Exploration Geophysicists.
  45. NabighianM.N.1972. The analytic signal of two‐dimensional magnetic bodies with polygonal cross‐section. Geophysics 37, 507–517.
    [Google Scholar]
  46. NabighianM.N., GrauchV.J.S., HansenR.O., LaFehrT.R., LiY., PeirceJ.W. et al . 2005. The historical development of the magnetic method in exploration. Geophysics 70, 33ND.
    [Google Scholar]
  47. NabighianM.N. and HansenR.O.2001. Unification of Euler and Werner deconvolution in three dimensions via the generalised Hilbert transform. Geophysics 66, 1805–1810.
    [Google Scholar]
  48. OldenburgD.W.1974. The inversion and interpretation of gravity anomalies. Geophysics 39, 526–536.
    [Google Scholar]
  49. PerrinJ., MarteletG., TruffertC. and DeparisJ.2009. Acquisition géophysique aéroportée de la région Centre, Phase 1 – Magnétisme et radiométrie spectrale. Rapport BRGM RP‐57442‐FR.
  50. PetersL.J.1949. The direct approach to magnetic interpretation and its practical application. Geophysics 14, 290–320.
    [Google Scholar]
  51. PhillipsJ.D.1997. Potential‐Field Geophysical Software for the PC, version 2.2. USGS open‐file report, pp. 97–725.
  52. ReidA.B., AllsopJ.M., GranserH., MillettA.J. and SomertonI.W.1990. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55, 80–91.
    [Google Scholar]
  53. RoestW.R., VerhoefJ. and PilkingtonM.1992. Magnetic interpretation using the 3‐D analytic signal. Geophysics 57, 116–125.
    [Google Scholar]
  54. SailhacP., GaldanéoA., GibertD., MoreauF. and DelorC.2000. Identification of sources of potential fields with the continuous wavelet transform: Complex wavelets and application to aeromagnetic profiles in French Guiana. Journal of Geophysical Research 105, 19455–19475.
    [Google Scholar]
  55. StavrevP.Y.1997. Euler deconvolution using differential similarity transformations of gravity or magnetic anomalies. Geophysical Prospecting 45, 207–246.
    [Google Scholar]
  56. StudingerM., BellR.E., KarnerG.D., TikkuA.A., HoltJ.W., MorseD.L. et al . 2003. Ice cover, landscape setting, and geological framework of Lake Vostok, East Antarctica. Earth and Planetary Science Letters 205, 195–210.
    [Google Scholar]
  57. TalbotJ.Y., MarteletG., CourriouxG., ChenY. and FaureM.2004. Emplacement in an extensional setting of the Mont Lozère–Borne granitic complex (SE France) inferred from comprehensive AMS, structural and gravity studies. Journal of Structural Geology 26, 11–28.
    [Google Scholar]
  58. ThompsonD.T.1982. EULDPH: A new technique for making computer‐assisted depth estimates from magnetic data. Geophysics 47, 31–37.
    [Google Scholar]
  59. UgaldeH.A. and MorrisW.A.2010. Cluster analysis of Euler deconvolution solutions; New filtering techniques and geologic strike determination. Geophysics 75, 61–70.
    [Google Scholar]
  60. VenkateswarluN.B. and RajuP.S.V.S.K.1992. Fast isodata clustering algorithms. Pattern Recognition 25 (3), 335–342.
    [Google Scholar]
  61. VigneresseJ.L.1988. La fracturation post‐hercynienne du Massif armoricain d’après les données géophysiques. Géologie de la France 4, 3–10.
    [Google Scholar]
  62. WeberC.1968. Données géophysiques sur le prolongement du socle cristallin du Morvan sous ses bordures sédimentaires. Bulletin de la Société Géologique de France 10(3), 263–272.
    [Google Scholar]
  63. WeberC.1971. Le socle antépermien sous la bordure sud du bassin de Paris d’après les données géophysiques. Bulletin BRGM, section I 3, 177–189.
    [Google Scholar]
  64. WeberC.1973. Le socle antétriasique de la partie sud du bassin de Paris d’après les données géophysiques. Bulletin BRGM, section II 3,4, 219–343.
    [Google Scholar]
  65. WeberC. and LorneJ.1966. Le socle anté‐permien dans la bordure sud‐ouest du Bassin Parisien. Essai d’interprétation par les méthodes géophysiques. Bulletin BRGM 1966–1, 67–85.
    [Google Scholar]
  66. WernerS.1953. Interpretation of magnetic anomalies at sheet‐like bodies. Sveriges Geologiska Undersokning , Ser. C 43, N06.
    [Google Scholar]
  67. YangY., LiY. and LiuT.2010. Continuous wavelet transform, theoretical aspects and application to aeromagnetic data at the Huanghua Depression, Dagang Oilfield, China. Geophysical Prospecting 58, 669–684.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12024
Loading
/content/journals/10.1111/1365-2478.12024
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Aeromagnetic; Basement; Euler; Gravity; Paris Basin; Werner

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error