1887
image of Suitability of 10 Hz vertical geophones for seismic noise array measurements based on frequency‐wavenumber and extended spatial autocorrelation analyses

Abstract

ABSTRACT

Microzonation studies using ambient noise measurements constitute a promising way for seismic hazard evaluation in urban areas. Among the existing techniques, seismic noise array measurements have become a valuable tool for estimating Vs profiles and thus, the characteristics of a soil structure. Although methods based on analysis of seismic noise are simpler, cheaper and faster than borehole drilling and down‐hole or cross‐hole logs to derive shear‐wave velocity profiles, array deployment requires the use of several stations (broadband or short‐period sensors) that are not always available. In this paper, we have compared the results obtained by 10 Hz‐vertical‐geophone arrays with the results provided by 1 Hz‐sensor arrays. Two sites in the Bajo Segura Basin (SE Spain), with different soil characteristics, were chosen for array deployment. The comparison is carried out in terms of dispersion curves by using frequency‐wavenumber (f‐k) and extended spatial autocorrelation (ESAC) techniques. Both analyses show a good agreement using either 1 Hz sensors or 10 Hz geophones; moreover, they demonstrate that it is possible to extend the analysis in a frequency range much below the natural frequency of the geophones. The results of our study confirm the suitability of standard seismic refraction/reflection equipment also for ambient noise array measurements, which constitutes a cheaper and faster way for investigating soil characteristics.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2012.01114.x
2012-11-07
2024-03-29
Loading full text...

Full text loading...

References

  1. AkiK.1957. Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bulletin of the Earthquake Research Institute 35, 415–456.
    [Google Scholar]
  2. AkiK.1965. A note on the use of microseisms in determining the shallow structures of the Earth's crust. Geophysics 30, 665–666.
    [Google Scholar]
  3. AlbarelloD. and LunedeiE.2010. Alternative interpretations of horizontal to vertical spectral ratios of ambient vibrations: New insights from theoretical modeling. Bulletin of Earthquake Engineering 8, 519–534.
    [Google Scholar]
  4. AlfaroP.1995. Neotectónica en la Cuenca del Bajo Segura (Extremo oriental de la Cordillera Bética) . PhD thesis, Universidad de Alicante , Spain .
  5. AstenM.W. and HenstridgeJ.D.1984. Array estimators and use of microseisms for reconnaissance of sedimentary basins. Geophysics 49, 1828–1837.
    [Google Scholar]
  6. BardP.‐Y.1994. Effects of surface geology on ground motion: Recent results and remaining issues. Proceedings of the 10th European Conference on Earthquake Engineering, Vienna , 305–323.
  7. Bonnefoy‐ClaudetS., CornouC., BardP.‐Y., CottonF., MoczoP., KristekJ. and FähD.2006. H/V ratio: A tool for site effects evaluation: Results from 1D noise simulations. Geophysics 167(2), 827–837.
    [Google Scholar]
  8. CaponJ.1969. High‐resolution frequency‐wavenumber spectrum analysis. Proceedings of the IEEE 57(8), 1408–1418.
  9. ChatelainJ.L., GuillierB., ·CaraF., ·DuvalA.M., AtakanK. and BardP.‐Y.2008. Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bulletin of Earthquake Engineering 6, 33–74.
    [Google Scholar]
  10. D’AmicoV., PicozziM., BalivaF. and AlbarelloD.2008. Ambient Noise Measurements for Preliminary Site‐Effects Characterization in the Urban Area of Florence, Italy. Bulletin of the Seismological Society of America 98, 1373–1388.
    [Google Scholar]
  11. DelgadoJ., AlfaroP., AndreuJ.M., CuencaA., DoménechC., EstévezA. et al . 2003. Engineering‐geological model of the Segura River flood plain (SE Spain): A case study for engineering planning. Engineering Geology 68, 171–187.
    [Google Scholar]
  12. DelgadoJ., López CasadoC., EstévezA., GinerJ., CuencaA. and MolinaS.2000. Mapping soft soils in the Segura river valley (SE Spain): A case study of microtremors as an exploration tool. Journal of Applied Geophysics 45, 19–32.
    [Google Scholar]
  13. EndrunB., OhrnbergerM. and SavvaidisA.2010. On the repeatability and consistency of three‐component ambient vibration array measurements. Bulletin of Earthquake Engineering 8, 535–570.
    [Google Scholar]
  14. Galiana‐MerinoJ.J., MahajanA.K., LindholmC., Rosa‐HerranzJ., MundepiA.K. and NiteshRai. 2011. Seismic noise array measurements using broadband stations and vertical geophones: Preliminary outcomes for the suitability on f‐k analysis. Bulletin of Earthquake Engineering 9, 1309–1325.
    [Google Scholar]
  15. GuillierB., AtakanK., ChatelainJ.L., HavskovJ., OhrnbergerM., CaraF. et al . 2008. Influence of instruments on the H/V spectral ratios of ambient vibrations. Bulletin of Earthquake Engineering 6, 3–31.
    [Google Scholar]
  16. HerakM.2008. ModelHVSR – A Matlab tool to model horizontal‐to‐vertical spectral ratio of ambient noise. Computer Geosciences 34, 1514–1526.
    [Google Scholar]
  17. HorikeM.1985. Inversion of phase velocity of long‐period microtremors to the S‐wave‐velocity structure down to the basements in urbanized areas. Journal of Physics of the Earth 33, 59–96.
    [Google Scholar]
  18. KöhlerA., OhrnbergerM., ScherbaumF., WatheletM. and CornouC.2007. Assessing the reliability of the modified three‐component spatial autocorrelation technique. Geophysical Journal International 168, 779–796.
    [Google Scholar]
  19. LachetC. and BardP.‐Y.1994. Numerical and theoretical investigations on the possibilities and limitations of Nakamura's technique. Journal of Physics of the Earth 42(4), 377–397.
    [Google Scholar]
  20. LacossR.T., KellyE.J. and ToksözM.N.1969. Estimation of seismic noise structure using arrays. Geophysics 34, 21–38.
    [Google Scholar]
  21. LebrunB., HatzfeldD. and BardP.‐Y.2001. A site effect study in urban area: Experimental results in Grenoble (France). Pure and Applied Geophysics 158, 2543–2557.
    [Google Scholar]
  22. LingS. and OkadaH.1993. An extended use of the spatial autocorrelation method for the estimation of geological structure using microtremors. Proceedings of the 89th Conference SEGJ, 44–48 (in Japanese).
  23. MalischewkyP.G. and ScherbaumF.2004. Love's formula and H/V ratio (ellipticity) of Rayleigh waves. Wave Motion 40, 57–67.
    [Google Scholar]
  24. MarzoratiS., BauzR., CaraF., Di GiacomoD., GuentherE., MonachesiG. et al . 2006. Microsismi osservati a Gubbio (PG): Applicazione al calcolo dei rapporti spattrali H/V nell’intervallo (0.1–1 Hz). In Riassunti estesi delle comunicazione del XXV Convegno Nazionale GNGTS, 28–29 November 2006, Rome (Italy), 201.
  25. MilanaG., BarbaS., Del PezzoE. and ZambonelliE.1996. Site response from ambient noise measurements: New perspectives from an array study in Central Italy. Bulletin of the Seismological Society of America 86(2), 320–328.
    [Google Scholar]
  26. MontenatC.1977. Les bassins néogènes et quaternaires du Levant d’Alicante à Murcie (Cordillères Bétiques orientales, Espagne). Stratigraphie, paléontologie et évolution dynamique. Documents des Laboratoires de Géologie Lyon , 0750–6635, 69, 345 pp.
    [Google Scholar]
  27. MucciarelliM.1998. Reliability and applicability of Nakamura's technique using microtremors: An experimental approach. Journal of Earthquake Engineering 2, 625–638.
    [Google Scholar]
  28. MucciarelliM. and GallipoliM.R.2001. A critical review of 10 years of microtremor HVSR technique. Bollettino di Geofisica Teorica ed Applicata 42, 255–266.
    [Google Scholar]
  29. MucciarelliM., GallipoliM.R., Di GiacomoD., Di NotaF. and NinoE.2005. The influence of wind on measurements of seismic noise. Geophysical Journal International 161, 303–308.
    [Google Scholar]
  30. MundepiA.K., Galiana‐MerinoJ.J., Kamal  and LindholmC.2010. Soil characteristics and site effect assessment in the city of Delhi (India) using H/V and f‐k methods. Soil Dynamics and Earthquake Engineering 30, 591–599.
    [Google Scholar]
  31. NakamuraY.1989. A method for dynamic characteristics estimation of sub surface using microtremor on the surface. Railway Technical Research Institute Report 30, 25–33.
    [Google Scholar]
  32. NEHRP
    NEHRP . 2009. Recommended seismic provisions for new buildings and other structures. FEMA P‐750, 2009 Edition.
  33. OhoriM., NobataA. and WakamatsuK.2002. A comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor analysis. Bulletin of the Seismological Society of America 92, 2323–2332.
    [Google Scholar]
  34. OhrnbergerM.2001. Continuous automatic classification of seismic signals of volcanic origin at Mt Merapi, Java, Indonesia. Dissertation, University of Potsdam.
  35. OhrnbergerM., ScherbaumF., KrügerF., PelzingR. and ReamerS.K.2004. How good are shear‐wave velocity models obtained from inversion of ambient vibrations in the lower Rhine embayment (N.W. Germany) Bollettino di Geofisica Teorica ed Applicata 45, 215–232.
    [Google Scholar]
  36. OkadaH.2003. The Microtremor Survey Method, Geophysical Monograph series 12. M. W.Asten (Editor), Society of Exploration Geophysicist, Tulsa , Oklahoma .
  37. ParolaiS., BormannP. and MilkereitC.2001. Assessment of the natural frequency of the sedimentary cover in the Cologne area (Germany) using noise measurements. Journal of Earthquake Engineering 5(4), 541–564.
    [Google Scholar]
  38. ParolaiS., MucciarelliM., GallipoliM.R., RichwalskiS.M. and StrolloA.2007. Comparison of Empirical and Numerical Site Responses at the Tito Test Site, Southern Italy. Bulletin of the Seismological Society of America 97, 1413–1431.
    [Google Scholar]
  39. ParolaiS., OrunbaevS., BindiD., StrolloA., UsupaevS., PicozziM. et al . 2010. Site Effects Assessment in Bishkek (Kyrgyzstan) Using Earthquake and Noise Recording Data. Bulletin of the Seismological Society of America 6, 3068–3082.
    [Google Scholar]
  40. ParolaiS., RichwalskiS.M., MilkereitC. and BormannP.2004. Assessment of the stability of H/V spectral rations from ambient noise and comparison with earthquake data in the Cologne area (Germany). Tectonophysics 390, 57–73.
    [Google Scholar]
  41. RichwalskiS., PicozziM., ParolaiS., MilkereitC., BalivaF., AlbarelloD. et al.2007. Rayleight wave dispersion curves from seismological and engineering‐geotechnical methods: A comparison at the Bornheim test site (Germany). Journal of Geophysics and Engineering 4, 349–361.
    [Google Scholar]
  42. RobertsJ.C. and AstenM.W.2004. Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method. Exploration Geophysics 35, 14–18.
    [Google Scholar]
  43. Rosa‐CintasS., Galiana‐MerinoJ.J., Molina‐PalaciosS., Rosa‐HerranzJ., García‐FernándezM. and JiménezM.J.2011. Soil characterization in urban areas of the Bajo Segura Basin (Southeast Spain) using H/V, F–K and ESAC methods. Journal of Applied Geophysics 75, 543–557.
    [Google Scholar]
  44. SatohT., KawaseH. and MatsushimaS.2001. Estimation of S‐wave velocity structures in and around the Sendai Basin, Japan, using array records of microtremors. Bulletin of the Seismological Society of America 91, 206–218.
    [Google Scholar]
  45. SoriaJ., AlfaroP., EstévezA., DelgadoJ. and DuránJ.J.1999. The Holocene sedimentation rates in the Lower Segura Basin (eastern Betic Cordillera, Spain): Eustatic implications. Bulletin de la Societe Geologique de France 170, 349–354.
    [Google Scholar]
  46. SouriauA., RoulléA. and PonsollesC.2007. Site Effects in the City of Lourdes, France, from H/V Measurements: Implications for Seismic‐Risk Evaluation. Bulletin of the Seismological Society of America 97, 2118–2136.
    [Google Scholar]
  47. StrolloA., BindiD., ParolaiS. and JäckelK.‐H.2008a. On the suitability of 1s geophone for ambient noise measurements in the 0.1–20 Hz frequency range: Experimental outcomes. Bulletin of Earthquake Engineering 6, 141–147.
    [Google Scholar]
  48. StrolloA., ParolaiS., JäckelK.‐H., MarzoratiS. and BindiD.2008b. Suitability of short‐period sensors for retrieving reliable H/V peaks for frequencies less than 1 Hz. Bulletin of the Seismological Society of America 98(2), 671–681.
    [Google Scholar]
  49. Tokimatsu, K.1997. Geotechnical site characterization using surfacewaves, Earthquake Geotech. Eng., Ishiliara  (ed.), Balkerna, Rotterdam , 1333–1368.
  50. ToksözM.N. and LacossR.T.1968. Microseisms: Mode Structure and Sources. Science 159, 872–873.
    [Google Scholar]
  51. WatheletM.2005. Array recordings of ambient vibrations: Surface‐wave inversion . PhD thesis, Université de Liège , Belgium .
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2012.01114.x
Loading
/content/journals/10.1111/j.1365-2478.2012.01114.x
Loading

Data & Media loading...

  • Article Type: Research Article
Keywords: Geophone ; f‐k technique ; Array measurements ; Seismic noise
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error