1887
Volume 11 Number 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Continuous monitoring of Electrical Resistivity Tomography (ERT) surveys can be a powerful tool for all kind of long‐term applications in the field of hydrogeophysics and cold‐region geophysics due to its high sensitivity to changes in water and ice content of the near subsurface. However, the large amount of data often calls for autonomous data processing schemes. In this study, a new filter algorithm designed to automatically detect and delete measurement errors from multiple ERT monitoring data is presented. Three successive filter steps were developed in order to eliminate technical errors, overall high‐value outliers and relative outliers within single data levels. The filter procedure is site‐independent and was tested on four different mountain permafrost sites in the Swiss Alps, representing various landforms (talus slope, rock plateau, rock glacier, bedrock). The filter performance is assessed by analysing the effect of the filter procedure on the mean apparent resistivity and on the resulting data misfit of the inversion and both, after the entire filter procedure as well as after each individual filter step. The new filter procedure is expected to yield rapid and high‐quality filtering for monitoring applications. In our study, the procedure is developed to support early detection of electrical resistivity changes associated with freezing and thawing events in permafrost conditions. The filter is applied to 128 ERT data sets from permafrost monitoring stations in Switzerland, including a four year long (2005–2008) ERT monitoring data set from the high‐mountain permafrost monitoring station Stockhorn, which serves as an illustrating example.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2013003
2013-01-01
2024-04-20
Loading full text...

Full text loading...

References

  1. BaumM.2008. Potential und Grenzen eines geoelektrischen Monitorings zur Untersuchung der active layer Dynamik und möglicher Permafrostdegradation am Stockhorn (Wallis, Schweizer Alpen). Diplomarbeit, Friedrich‐Schiller Universität Jena, Chemisch‐Geowissenschaftlich Fakultät, Institut für Geographie, 78.
    [Google Scholar]
  2. BegertM., SeizG., SchlegelT., MusaM. and BaudrazG.2003. Homogenisierung von Klimamessreihen der Schweiz und Bestimmung der Normwerte 1961–1990, Schlussbericht des Projekts NORM 90. Veröffentlichungen der MeteoSchweiz, MeteoSchweiz, Zürich, Vol. 67.
    [Google Scholar]
  3. BommerC., PhillipsM. and ArensonL.U.2010. Practical recommendations for planning, constructing and maintaining infrastructure in mountain permafrost. Permafrost and Periglacial Processes21, 97–104.
    [Google Scholar]
  4. DelaloyeR.2004. Contribution à l’étude du pergélisol de montagne en zone marginale. Série Geofocus, Vol. 10. Department of Geosciences, Geology, University of Fribourg, 240.
    [Google Scholar]
  5. DelaloyeR. and LambielC.2005. Evidences of winter ascending air circulation throughout talus slopes and rock glaciers situated in the lower belt of alpine discontinuous permafrost (Swiss Alps). Norsk Geografisk Tidsskrift59, 194–203.
    [Google Scholar]
  6. FerathiaJ., DjarfourN., BaddariK. and GuerinR.2009. Application of signal dependent rank‐order mean filter to the removal of noise spikes from 2D electrical resistivity imaging data. Near Surface Geophysics7, 159–169.
    [Google Scholar]
  7. FerahtiaJ., DjarfourN., BaddariK. and KheldounA.2012. A fuzzy logic‐based filter for the removal of spike noise from 2D electrical resistivity data. Journal of Applied Geophysics87, 19–27.
    [Google Scholar]
  8. GruberS.2005. Mountain Permafrost: Transient Spatial Modelling, Model Verification and the Use of Remote Sensing . PhD thesis, Universität Zürich, 129.
    [Google Scholar]
  9. GruberS., KingL., KohlT., HerzT., HaeberliW. and HoelzleM.2004. Interpretation of geothermal profiles perturbed by topography: The Alpine permafrost boreholes at Stockhorn Plateau, Switzerland. Permafrost and Periglacial Processes15(4), 349–357.
    [Google Scholar]
  10. HaeberliW.1992. Construction, environmental problems and natural hazards in periglacial mountain belts. Permafrost and Periglacial Processes3, 111–124.
    [Google Scholar]
  11. HansonS. and HoelzleM.2004. The Thermal Regime of the Active Layer at the Murtèl Rock Glacier Based on Data form 2002. Permafrost and Periglacial Processes15, 273–282.
    [Google Scholar]
  12. HarrisC., ArensonL.U., ChristiansenH.H., EtzelmüllerB., FrauenfelderR., GruberS.et al. 2009. Permafrost and climate in Europe: Monitoring and modeling thermal, geomorphological and geotechnical responses. Earth‐Science Reviews92(3–4), 117–171.
    [Google Scholar]
  13. HauckC.2001. Geophysical methods for detecting permafrost in high mountains. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich , 171, 204. PhD thesis, ETH Zürich.
    [Google Scholar]
  14. HauckC.2002. Frozen ground monitoring using DC resistivity tomography. Geophysical Research Letters29(21), 2016.
    [Google Scholar]
  15. HauckC., BöttcherM. and MaurerH.2011. A new model for estimating subsurface ice content based on combined electrical and seismic data sets. The Cryosphere5, 453–468.
    [Google Scholar]
  16. HauckC. and KneiselC.2008. Applied Geophysics in Periglacial Environments . Cambridge University Press, 240.
    [Google Scholar]
  17. HauckC., Vonder MühllD. and MaurerH.2003. Using DC resistivity tomography to detect and characterize mountain permafrost. Geophysical Prospecting51, 273–284.
    [Google Scholar]
  18. HilbichC., FussC. and HauckC.2011. Automated Time‐lapse ERT for Improved Process Analysis and Monitoring of Frozen Ground. Permafrost and Periglacial Processes22, 306‐319.
    [Google Scholar]
  19. HilbichC., HauckC., DelaloyeR. and HoelzleM.2008b. A geoelectric monitoring network and resistivity‐temperature relationships of different mountain permafrost sites in the Swiss Alps. Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, 699–704.
    [Google Scholar]
  20. HilbichC., HauckC., HoelzleM., ScherlerM., SchudelL., VölkschI.et al. 2008a. Monitoring of mountain permafrost evolution using electrical resistivity tomography: A 7‐years study of seasonal, annual and long‐term variations at Schilthorn, Swiss Alps. Journal of Geophysical Research13(113), F01S90.
    [Google Scholar]
  21. HilbichC., MarescotL., HauckC., LokeM.H. and MäusbacherR.2009. Applicability of Electrical Resistivity Tomography Monitoring to Coarse Blocky and Ice‐rich Permafrost Landforms. Permafrost and Periglacial Processes20(3), 269–284.
    [Google Scholar]
  22. HoelzleM. and GruberS.2008. Borehole and Ground Surface Temperatures and their relationship to meteorological conditions in the Swiss Alps. Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, 723–728.
    [Google Scholar]
  23. JohnsonT.C., SlaterL.D., NtarlagiannisD., Day‐LewisF.D. and ElwaseifM.2012. Monitoring groundwater‐surface water interactions using time‐series and time frequency analysis of transient three‐dimensional electrical resistivity changes. Water Resources Research48, W07506.
    [Google Scholar]
  24. KingL.1990. Soil and rock temperatures in discontinuous permafrost: Gornergrat and Unterrothorn, Wallis, Swiss Alps. Permafrost and Periglacial Processes1, 177–188.
    [Google Scholar]
  25. KneiselC., HauckC., FortierR. and MoormanB.2008. Advances in geophysical methods for permafrost investigation. Permafrost and Periglacial Processes19, 157–178.
    [Google Scholar]
  26. KurasO., PrichardJ., MeldrumP.I., ChambersJ.E., WilkinsonP.B., OgilvyR.D. and WealthallG.P.2009. Monitoring hydraulic processes with Automated Time‐Lapse Electrical Resistivity Tomography (ALERT). Comptes Rendus Geosciences341(10–11), 868–885. doi: 10.1016/j.crte.2009.07.010.
    [Google Scholar]
  27. LambielC.2006. Le pergélisol dans les terrains sédimentaires à forte déclivité: distribution, régime thermique et instabilités . Thèse de doctorat, Faculté des Géosciences et de l’Environnement, Université de Lausanne, 251.
    [Google Scholar]
  28. LokeM.H.1996. Tutorial: 2D and 3D electrical resistivity surveys. Lecture notes, Geotomo Software, 136 pp.
    [Google Scholar]
  29. LokeM.H. and BarkerR.D.1995. Least‐squares deconvolution of apparent resistivity pseudosections. Geophysics60, 1682–1690.
    [Google Scholar]
  30. LokeM.H. and BarkerR.D.1996. Rapid least‐squares inversion of apparent resistivity pseudosections using a quasi‐Newton method. Geophysical Prospecting44, 131–152.
    [Google Scholar]
  31. MarescotL., LokeM.H., ChapellierD., DelaloyeR., LambielC. and ReynardE.2003. Assessing reliability of 2D resistivity imaging in mountain permafrost studies using the depth of investigation index method. Near Surface Geophysics1(2), 57–67.
    [Google Scholar]
  32. Meteosuisse
    Meteosuisse . 19991999-2010. Monatliche Witterungsberichte der MeteoSchweiz SMA, October 1999–September 2010. (UTL: http://www.meteosuisse.ch, visited 31.07.2011, 24.01.2012)
  33. Permos
    Permos . 2009. Permafrost in Switzerland 2004/2005 and 2005/2006. In: Glaciological Report Permafrost No. 6/7 , (eds J.Noetzli , B.Naegeli and D.Vonder Mühll ), 100. Cryospheric Commission of the Swiss Academy of Sciences.
    [Google Scholar]
  34. Permos
    Permos . 2010. Permafrost in Switzerland 2006/2007 and 2007/2008. In: Glaciological Report Permafrost No. 8/9 , (eds J.Noetzli and D.Vonder Mühll ), 68. Cryospheric Commission of the Swiss Academy of Sciences.
    [Google Scholar]
  35. PhillipsM. and MargrethS.2008. Effects of ground temperature and slope deformation on the service life of snow‐supporting structures in mountain permafrost: Wisse Schijen, Randa, Swiss Alps. Proceedings of the 9th International Conference on Permafrost , Fairbanks, Alaska, 1417–1422.
    [Google Scholar]
  36. RitzM., RobainH., PervagoE., AlbouyY., CamerlynckC., DescloitresM. and MarikoA.1999. Improvement to resistivity pseudosection modeling by removal of near‐surface inhomogeneity effects: Application to a soil system in south Cameroon. Geophysical Prospecting47, 85–101.
    [Google Scholar]
  37. RossetE.2012. Automatic Filtering of ERT Monitoring Data in Mountain Permafrost: Filter Development and Quality Control . Master Thesis, University of Fribourg/CH, Faculty of Sciences, Geography Unit, 160.
    [Google Scholar]
  38. SchneiderS., HauckC. and HoelzleM. (submitted). Geophysical properties of different high alpine periglacial materials, a field based study at Murtèl‐Corvatsch, Upper Engadine, Swiss Alps. Submitted to Annals of Glaciology, (in press).
    [Google Scholar]
  39. SchneiderS., HoelzleM. and HauckC.2012. Influence of surface and subsurface heterogeneity on observed borehole temperatures at a mountain permafrost site in the Upper Engadine, Swiss Alps. The Cryosphere6, 517–531.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2013003
Loading
/content/journals/10.3997/1873-0604.2013003
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error