1887
Volume 11 Number 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

We apply Ground Penetrating Radar (GPR) to detect a prehistoric canoe at the Maoshan site, Zhejiang Province, China. A complex attribute analysis of the GPR data allows enhancing the precision in target detection and provides more details about the canoe and the burial environment. The burial depth of the bottom interface of the prehistoric canoe is detected and the integrity of the whole canoe is assessed through a GPR survey. Difficulties in the application of dense sampling of 2D and pseudo 3D GPR data originate from micro‐topographical disturbance that specifically affects the pseudo 3D investigation results obtained from high‐frequency antennas. Data processing and advanced imaging techniques can only remove part of such effects. The research demonstrates that GPR can successfully image wooden cultural relics buried in the shallow subsurface with ultra, high‐density trace spacing and high‐frequency antennas even in totally saturated clay‐rich soils based on 2D profiles and pseudo 3D methodologies, characterized by tight (cm) cross‐line/in‐line spacing.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2013029
2013-03-01
2024-03-29
Loading full text...

Full text loading...

References

  1. AbdullatifA.2006. Mapping the surface of a shallow groundwater system using GPR: A case study in eastern Saudi Arabia. The Leading Edge6, 738–740.
    [Google Scholar]
  2. AnnanA.P.2003. Ground Penetrating Radar Applications Principles, Procedures & Applications. Sensors & Software Inc.
    [Google Scholar]
  3. ArnoldJ.E., AmbosE.L. and LarsonD.O.1997. Geophysical surveys of stratigraphically complex Island California Sites: New Implications for Household Archaeology. Antiquity71, 157–168.
    [Google Scholar]
  4. BakerG.S., SteeplesD.W., SchmeissnerC., PavlovicM. and PlumbR.2001. Near surface imaging using coincident seismic and GPR data. Geophysical Research Letters28(4), 627–630.
    [Google Scholar]
  5. BateyR.A.1987. Subsurface interface radar at Sepphoris, Israel, 1985. Journal of Field Archaeology14, 1–8.
    [Google Scholar]
  6. BevanB.W.1977. Ground‐penetrating radar at Valley Forge. Geophysical Survey System, North Salem, New Hampshire.
    [Google Scholar]
  7. BevanB.W.1991. The search for graves. Geophysics56, 1310–1319.
    [Google Scholar]
  8. BevanB. and KenyonJ.1975. Ground‐penetrating radar for historical archaeology. MASCA Newsletter11(2), 2–7.
    [Google Scholar]
  9. BoothA., LinfordN.T., ClarkR.A. and MurrayA.2008. Three‐dimensional, multi‐offset ground‐penetrating radar imaging of archae‐ological targets. Archaeological Prospection15, 93–112.
    [Google Scholar]
  10. ChopraS. and AlexeevV.2006. Applications of texture attribute analysis to 3‐D seismic data. The Leading Edge25, 934–940.
    [Google Scholar]
  11. ChopraS. and MarfurtK.J.2007. Seismic attributes for prospect identification and reservoir characterization. SEG/EAGE, 464.
    [Google Scholar]
  12. ChristieM., TsofliasG.P., StockliD.F. and BlackR.2009. Assessing fault displacement and off fault deformation in an extensional tectonic setting using 3‐D ground‐penetrating radar imaging. Journal of Applied Geophysics68, 9–16.
    [Google Scholar]
  13. ConyersL.B.2012. Interpreting Ground‐Penetrating Radar for Archaeology . Left Coast Press, Walnut Creek, CA.
    [Google Scholar]
  14. ConyersL.B. and GoodmanD.1997. Ground‐Penetrating Radar: An Introduction for Archaeologists . AltaMira Press, Walnut Creek, California.
    [Google Scholar]
  15. DavisJ.L. and AnnanA.P.1989. Ground‐penetrating radar for high‐resolution mapping of soil and rock stratigraphy. Geophysical Prospecting37, 531–551.
    [Google Scholar]
  16. FisherE., McMechanG.A. and AnnanA.P.1992. Acquisition and processing of wide‐aperture ground‐penetrating radar data. Geophysics57, 495–504.
    [Google Scholar]
  17. ForteE., PipanM., CasabiancaD., Di CuiaR. and RivaA.2012. Imaging and characterization of a carbonate hydrocarbon reservoir analogue using GPR attributes. Journal of Applied Geophysics81, 76–87.
    [Google Scholar]
  18. GaffneyV.L., PattersonH., PiroS., GoodmanD. and NishimuraY.2004. Multi‐methodological approach to study and characterize Forum Novum (Vescovio, Italy). Archaeological Prospection11, 201–212.
    [Google Scholar]
  19. GaoD.2003. Volume texture extraction for 3‐D seismic visualization and interpretation. Geophysics68, 1294–1302.
    [Google Scholar]
  20. GoodmanD., NishimuraY. and RogersJ.D.1995. GPR time‐slices in archaeological prospection. Archaeological Prospection2, 85–89.
    [Google Scholar]
  21. GrasmueckM., WegerR. and HorstmeyerH.2005. Full‐resolution 3‐D GPR imaging. Geophysics70(1), K12–K19.
    [Google Scholar]
  22. KadiogluS.2010. Definition of buried archaeological remains with a new 3‐D visualization technique of a ground‐penetrating radar data set in Temple Augustus in Ankara, Turkey. Near Surface Geophysics8, 397–406.
    [Google Scholar]
  23. LeckebuschJ.2003. Ground‐penetrating radar: A modern three‐dimensional prospection method. Archaeological Prospection10, 213–240.
    [Google Scholar]
  24. LeeK., TomassoM. and AmbroseW.A.2007. Integration of GPR with stratigraphic and lidar data to investigate behind‐the‐outcrop 3‐D geometry of a tidal channel reservoir analog, upper Ferron Sandstone, Utah. The Leading Edge8, 994–998.
    [Google Scholar]
  25. LeucciG. and NegriS.2006. Use of ground‐penetrating radar to map subsurface archaeological features in an urban area. Journal of Archaeological Science33, 502–512.
    [Google Scholar]
  26. MalagodiS., OrlandoL. and RossoF.1996. Location of archaeological structures using GPR method: Three‐dimensional data acquisition and radar signal processing. Archaeological Prospection3, 12–23.
    [Google Scholar]
  27. McClymontA.F., GreenA.G., StreichR., HorstmeyerH., TronickeJ., NobesD.C.et al. 2008. Visualization of active faults using geometric attributes of 3‐D GPR data: An example from the Alpine Fault Zone, New Zealand. Geophysics73(2), B11–B23.
    [Google Scholar]
  28. MilliganR. and AtkinM.1993. The use of ground‐probing radar within a digital environment on archaeological sites. In: Computing the Past: Computer Application and Quantitative methods in Archaeology , (eds J.Andresen , T.Madsen and I.Scollar ), 285–291. Aarhus, Denmark, Aarhus University Press.
    [Google Scholar]
  29. NeubauerW., Eder‐HinterleitnerA., SerenS. and MelicharP.2002. Georadar in the Roman civil town Carnuntum, Austria: An approach for archaeological interpretation of GPR data. Archaeological Prospection9, 135–156.
    [Google Scholar]
  30. NielsenL., BrockdorffA., BjeragerM. and SurlykF.2009. Three‐dimensional architecture and development of Danian bryozoan mounds at Limhamn, south‐west Sweden, using ground‐penetrating radar. Sedimentology56, 695–708.
    [Google Scholar]
  31. NishimuraY. and KameiH.1990. A study in the application of geophysical survey. In: Archaeometry ‘90: Proceedings of the 27th International Symposium on Archaeometry , (eds E.Pernicka and G.A.Wagner ), 757–765. BirkhäuserVerlag, Basle, Germany.
    [Google Scholar]
  32. NuzzoL., LeucciG., NegriS., CarrozzoM.T. and QuartaT.2002. Application of 3‐D visualization techniques in the analysis of GPR data for archaeology. Annals of Geophysics45(2), 321–337.
    [Google Scholar]
  33. SassenD.S. and EverettM.E.2009. 3‐D polarimetric GPR coherency attributes and full‐waveform inversion of transmission data for characterizing fractured rock. Geophysics74(3), J23–J34.
    [Google Scholar]
  34. SenechalP., PerroudH. and SenechalG.2000. Interpretation of reflection attributes in a 3‐D GPR survey at Vall’e d’Ossau, western Pyrenees, France. Geophysics65(5), 1435–1445.
    [Google Scholar]
  35. UrsinB.1983. Review of elastic and electromagnetic wave propagation in horizontally layered media. Geophysics48(1), 1063–1081.
    [Google Scholar]
  36. VaughnC.J.1986. Ground‐penetrating radar surveys used in archaeological investigations. Geophysics51, 595–604.
    [Google Scholar]
  37. ZhaoW.‐K., TianG., WangB.‐B., ShiZ.‐J. and LinJ.‐X.2012. Application of 3D GPR attribute technology in archaeological investigations. Applied Geophysics9(3), 261–269.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2013029
Loading
/content/journals/10.3997/1873-0604.2013029
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error