1887
Volume 11 Number 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Tomographic measurements of the spectral induced polarization (SIP) response of aquifer sediments were conducted at the U.S. Department of Energy’s (DOE) Integrated Field Research Challenge site (IFRC) in Rifle, Colorado (USA), where biostimulation research is ongoing with the purpose to immobilize uranium in tailings‐contaminated groundwater. The aims of the SIP surveys were to (a) collect data over a sufficiently broad bandwidth so as to determine the characteristic frequency of the spectral response (at which the strongest polarization response takes places), (b) investigate the distribution of spectral parameters (e.g., characteristic time constant) in an imaging framework and (c) evaluate the potential of these images to delineate changes in the hydraulic properties of the aquifer. Careful field procedures provided high‐quality SIP data from 0.060–256 Hz for three different periods during the remediation experiment. Data quality was evaluated by means of analysis of the discrepancy between normal and reciprocal measurements. A Cole‐Cole model was fitted to pixel values extracted from the inverted images in order to assess changes in the SIP response – particularly in time constant () and chargeability () – due to processes accompanying the stimulation of subsurface microbial activity. A significant increase in both and was observed after halting acetate injection, consistent with the accumulation of semi‐conductive minerals (e.g., FeS) during biostimulation and the post‐injection rebound in aqueous Fe(II). The reliability of the imaged spectral parameters was assessed by means of a numerical study.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2013020
2013-04-01
2024-04-19
Loading full text...

Full text loading...

References

  1. Abdel AalG.Z., SlaterL.D. and AtekwanaE.A.2006. Induced‐polarization measurements on unconsolidated sediments from a site of active hydrocarbon biodegradation. Geophysics71, H13–H24. doi:10.1190/1.2187760
    [Google Scholar]
  2. AlumbaughD.L. and NewmanG.A.2000. Image appraisal for 2‐D and 3‐D electromagnetic inversion. Geophysics65, 1455–1467.
    [Google Scholar]
  3. AngoranY. and MaddenT.R.1977. Induced polarization ‐ Preliminary study of its chemical basis. Geophysics42, 788–803.
    [Google Scholar]
  4. AtekwanaE.A. and SlaterL.D.2009. Biogeophysics: A new frontier in Earth science research. Reviews of Geophysics47, RG4004. doi:10.1029/2009RG000285
    [Google Scholar]
  5. BingZ. and GreenhalghS.A.2000. Cross‐hole resistivity tomography using different electrode configurations. Geophysical Prospecting48, 887–912. doi:10.1046/j.1365‐2478.2000.00220.x
    [Google Scholar]
  6. CampbellK.M., KukkadapuR.K., QafokuN.P., PeacockA.D., LesherE., WilliamsK.H.et al. 2012. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium contaminated aquifer. Applied Geochemistry27(8), 1499–1511. doi:10.1016/j.apgeochem.2012.04.013
    [Google Scholar]
  7. ChenY.P. and OrD.2006. Effects of Maxwell‐Wagner polarization on soil complex dielectric permittivity under variable temperature and electrical conductivity. Water Resources Research42, W06423. doi:10.1029/2005WR004590
    [Google Scholar]
  8. ColeK.S. and ColeR.H.1941. Dispersion and absorption in dielectrics I. Alternating current characteristics. Journal of Chemical Physics9, 341–351.
    [Google Scholar]
  9. DahlinT., LerouxV. and NissenJ.2002. Measuring techniques in induced polarisation imaging. Journal of Applied Geophysics50, 279–298.
    [Google Scholar]
  10. Day‐LewisF.D., SinghaK. and BinleyA.2005. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution‐dependent limitations. Journal of Geophysical Research110, B08206.
    [Google Scholar]
  11. Flores OrozcoA., KemnaA., OberdörsterC., ZschornackL., LevenC., DietrichP. and WeissH.2012a. Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging. Journal of Contaminant Hydrology136‐137, 131–144.
    [Google Scholar]
  12. Flores OrozcoA., KemnaA. and ZimmermannE.2012b. Data error quantification in spectral induced polarization imaging. Geophysics77(3), E227–E237.
    [Google Scholar]
  13. Flores OrozcoA., WilliamsK.H., LongP.E., HubbardS.S. and KemnaA.2011. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium‐contaminated aquifer. Journal of Geophysical Research116, G03001. doi:10.1029/2010jg001591
    [Google Scholar]
  14. KemnaA.2000. Tomographic inversion of complex resistivity ‐ Theory and application. PhD thesis, Ruhr‐University of Bochum.
  15. KemnaA., BinleyA., CassianiG., NiederleithingerE., RevilA., SlaterL.et al. 2012. An overview of the spectral induced polarization method for near‐surface applications. Near Surface Geophysics10, 453–468.
    [Google Scholar]
  16. KemnaA., BinleyA., RamirezA. and DailyW.2000. Complex resistivity tomography for environmental applications. Chemical Engineering Journal77, 11–18.
    [Google Scholar]
  17. KemnaA., BinleyA. and SlaterL.2004. Crosshole IP imaging for engineering and environmental applications. Geophysics69, 97–107.
    [Google Scholar]
  18. LaBrecqueD. and DailyW.2008. Assessment of measurement errors for galvanic resistivity electrodes of different composition. Geophysics73, F55–F64. doi:10.1190/1.2823457
    [Google Scholar]
  19. LaBrecqueD.J., MilettoM., DailyW., RamirezA. and OwenE.1996. The effects of noise on Occam’s inversion of resistivity tomography data. Geophysics61, 538–548.
    [Google Scholar]
  20. LesmesD.P. and FryeK.M.2001. Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone. Journal of Geophysical Research106, 4079–4090.
    [Google Scholar]
  21. LesmesD.P. and MorganF.D.2001. Dielectric spectroscopy of sedimentary rocks. Journal of Geophysical Research106, 13329–13346.
    [Google Scholar]
  22. MarshallD. and MaddenT.1959. Induced polarization, a study of its causes. Geophysics24, 790–816.
    [Google Scholar]
  23. MejuM.1994. Geophysical Data Analysis: Understanding Inverse Problem Theory and Practice. Society of Exploration Geophysicists Course Notes Series, Vol. 6.SEG Publishers, Tulsa, Oklahoma, 296.
    [Google Scholar]
  24. MerriamJ.B.2007. Induced polarization and surface electrochemistry. Geophysics72, F157–F166. doi:10.1190/1.2732554
    [Google Scholar]
  25. MorganF.D. and LesmesD.P.1994. Inversion for Dielectric‐Relaxation Spectra. Journal of Chemical Physics100, 671–681.
    [Google Scholar]
  26. NguyenF., KemnaA., AntonssonA., EngesgaardP., KurasO., OgilvyR.et al. 2009. Characterization of seawater intrusion using 2D electrical imaging. Near Surface Geophysics7, 377–390.
    [Google Scholar]
  27. NguyenF., KemnaA., RobertT., HermansT., CaterinaD., DaoudiM. and Flores OrozcoA.2012. Inversion of multi‐temporal geoelectrical data sets: Importance of data error quantification and model constraints. Near Surface Geophysics, submitted.
    [Google Scholar]
  28. NordsiekS. and WellerA.2008. A new approach to fitting induced‐polarization spectra. Geophysics73, F235–F245. doi:10.1190/1.2987412
    [Google Scholar]
  29. NtarlagiannisD., WilliamsK.H., SlaterL. and HubbardS.2005. Low‐frequency electrical response to microbial induced sulfide precipitation. Journal of Geophysical Research‐Biogeosciences110, G02009. doi:10.1029/2005JG000024
    [Google Scholar]
  30. PeltonW.H., WardS.H., HallofP.G., SillW.R. and NelsonP.H.1978. Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics43, 588–609.
    [Google Scholar]
  31. QafokuN.P., KukkadapuR.K., McKinleyJ.P., AreyB.W., KellyS.D., WangC.et al. 2009. Uranium in Framboidal Pyrite from a Naturally Bioreduced Alluvial Sediment. Environmental Science and Technology43, 8528–8534.
    [Google Scholar]
  32. RevilA. and CosenzaP.2010. Comment on ‘Generalized effective‐medium theory of induced polarization’ (Michael Zhdanov, 2008, Geophysics 73, F197‐F211). Geophysics75, X7–X9. doi:10.1190/1.3372299
    [Google Scholar]
  33. RevilA., KaraoulisM., JohnsonT. and KemnaA.2012. Review: Some low‐frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeology Journal20(4), 617–658.
    [Google Scholar]
  34. SchwarzG.1962. A theory of the low‐frequency dielectric dispersion of colloidal particles in electrolyte solution. The Journal of Physical Chemistry66, 2636–2642. doi:10.1021/j100818a067
    [Google Scholar]
  35. SlaterL.2007. Near surface electrical characterization of hydraulic conductivity: From petrophysical properties to aquifer geometries ‐ A review. Surveys in Geophysics28, 169–197. doi:10.1007/s10712‐007‐9022‐y
    [Google Scholar]
  36. SlaterL. and BinleyA.2006. Synthetic and field‐based electrical imaging of a zerovalent iron barrier: Implications for monitoring long‐term barrier performance. Geophysics71, B129–B137.
    [Google Scholar]
  37. SlaterD.L., ChoiD. and WuY.2005. Electrical properties of iron‐sand columns: Implications for induced polarization investigation and performance monitoring of iron wall barriers. Geophysics70(4), G87–G94.
    [Google Scholar]
  38. SlaterL., NtarlagiannisD., PersonnaY.R. and HubbardS.2007. Pore‐scale spectral induced polarization signatures associated with FeS biomineral transformations. Geophysical Research Letters34. doi:10.1029/2007GL031840
    [Google Scholar]
  39. SlaterL., NtarlagiannisD. and WishartD.2006. On the relationship between induced polarization and surface area in metal‐sand and clay‐sand mixtures. Geophysics71, A1–A5. doi:10.1190/1.2187707
    [Google Scholar]
  40. SonJ.‐S., KimJ.‐H. and YiM.‐J.2007. A new algorithm for SIP parameter estimation from multi‐frequency IP data: Preliminary results. Exploration Geophysics38, 60–68.
    [Google Scholar]
  41. StummerP., MaurerH. and GreenA.G.2004. Experimental design: Electrical resistivity data sets that provide optimum subsurface information. Geophysics69, 120–139.
    [Google Scholar]
  42. SumnerJ.S.1976. Principles of Induced Polarization for Geophysical Exploration. Elsevier, Amsterdam.
    [Google Scholar]
  43. Van VoorhisG.D., NelsonP.H. and DrakeT.L.1973. Complex resistivity spectra of porphyry copper mineralization. Geophysics38, 49–60. doi:10.1190/1.1440333
    [Google Scholar]
  44. WellerA., SlaterL., NordsiekS. and NtarlagiannisD.2010. On the estimation of specific surface per unit pore volume from induced polarization: A robust empirical relation fits multiple data sets. Geophysics75, WA105.
    [Google Scholar]
  45. WilkinsM.J, VerBerkmoesN.C., WilliamsK.H., CallisterS.J., MouserP., ElifantzH.et al. 2009. Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation. Applied and Environmental Microbiology75(20), 6591–6599.
    [Google Scholar]
  46. WilliamsK.H., KemnaA., WilkinsM.J., DruhanJ., ArntzenE., N’GuessanA.L.et al. 2009. Geophysical Monitoring of Coupled Microbial and Geochemical Processes during Stimulated Subsurface Bioremediation. Environmental Science and Technology43, 6717–6723.
    [Google Scholar]
  47. WilliamsK.H., LongP.E., DavisJ.A., WilkinsM.J., N’GuessanA.L., SteefelC.I.et al. 2005. Geophysical imaging of stimulated microbial biomineralization. Environmental Science and Technology39, 7592–7600. doi:10.1021/es0504035
    [Google Scholar]
  48. WongJ.1979. An electrochemical model of the induced‐polarization phenomenon in disseminated sulfide ores. Geophysics44, 1245–1265.
    [Google Scholar]
  49. WongJ. and StrangwayD.W.1981. Induced Polarization in Disseminated Sulfide Ores Containing Elongated Mineralization. Geophysics46, 1258–1268.
    [Google Scholar]
  50. XiangJ., ChengD., SchlindweinF.S. and JonesN.B.2003. On the adequacy of identified Cole‐Cole models. Computers and Geosciences2, 647–654.
    [Google Scholar]
  51. ZimmermannE., KemnaA., BerwixJ., GlaasW. and VereeckenH.2008. EIT measurement system with high phase accuracy for the imaging of spectral induced polarization properties of soils and sediments. Measurement Science and Technology19, 094010. doi:10.1088/0957‐0233/19/9/094010
    [Google Scholar]
  52. ZisserN., KemnaA. and NoverG.2010. Relationship between low‐frequency electrical properties and hydraulic permeability of low‐permeability sandstones. Geophysics75, E131–E141. doi:10.1190/1.3413260
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2013020
Loading
/content/journals/10.3997/1873-0604.2013020
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error