1887
Volume 25, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

The study of the Las Tunas River incisions, located in the eastern Andean foreland front (3320’ S in Argentina), provides new clues for the interpretation of deep piedmont entrenchments. Both the Las Tunas mountain catchment and its piedmont are strongly entrenched with maximal incision of over 100 m at the mountain front. Three main terrace levels are well exposed and are labelled T1, T2 and T3 from the youngest to the oldest. We combined geological and geomorphological field observations, kinematic GPS data, satellite data and aerial photos with geochronological and analysis to provide a detailed description of terrace organization and a discussion of the evolution of the Las Tunas landscape. The surprisingly constant concentrations in surface layers as deep as 1.5 m show that gently dipping alluvial surfaces can be continuously and deeply mixed. Our data show a first period of deposition (Mesones Fm) before 0.85 Myr (minimum T3 age), followed by deep erosion and a second sedimentation period (Las Tunas Fm) that includes a ca. 0.6 Myr ash deposit. T2 and T1 are inset in the Las Tunas Fm and were abandoned ca. 15–20 kyr ago. The similar ages for T2 and T1 show that post‐20 entrenchment occurred very rapidly. Despite Quaternary deformation in the Las Tunas piedmont, terrace entrenchment is best explained by paleo‐climatic changes. The terrace organization reveals that the erosion‐sedimentation phases affected the entire system from the piedmont toe to 10 km upstream of the mountain front. Finally, contrary to the neighbouring more deeply incised Diamante River system, where late Quaternary piedmont uplift is more likely to have been a factor causing incision, the more stable Las Tunas system provides an incomplete geomorphological record of Pleistocene and Holocene climate variations. We suggest that climate variations are better recorded in uplifting piedmonts than in stable ones, where the magnitude of incision and sedimentation and the fact that they occur repeatedly at the same elevation can erase a large part of the record.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12019
2013-05-25
2024-04-23
Loading full text...

Full text loading...

References

  1. Anderson, R.S., Repka, J.L. & Dick, G.S. (1996). Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al. Geology, 24, 47–51.
    [Google Scholar]
  2. Armitage, J.J., Duller, A., Whittaker, A. & Allen, P.A. (2011) Transformation of tectonic and climatic signals from source to sedimentary archive. Nat. Geosci., 4, 231‐235, DOI 10.1038/NGE0187.
    [Google Scholar]
  3. Babault, J., Bonnet, S., Crave, A. & Van den Driessche, J. (2005) Influence of piedmont sedimentation on erosion dynamics of an uplifting landscape: an experimental approach. Geology, 33(4), 301–304.
    [Google Scholar]
  4. Baker, S., Gosse, J., McDonald, E., Evenson, E. & Martinez, O. (2009) Quaternary history of the piedmont reach of Rio Diamante, Argentina. J. South Am. Ear. Sci., 28, 54–73.
    [Google Scholar]
  5. Balco, G., Stone, J.O., Lifton, N.A. & Dunai, T.J. (2008) A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochronol., 3‐3, 174–195.
    [Google Scholar]
  6. Beaumont, P. (1972) Alluvial fans along the foothills of the Elburz Mountains, Iran. Palaeogeography, Palaeoclimatol., Palaeoecol., 12, 251–273.
    [Google Scholar]
  7. Bierman, P., Clapp, E., Nichols, K., Gillespie, A. & Caffee, M. (2001) Using cosmogenic nuclide measurements in sediments to understand background rates of erosion and sediment transport. In: Landscape Erosion and Evolution Modeling (Ed. by R.S.Harmon & W.M.Doe ), pp. 89–116. Kluwer 1., New York.
    [Google Scholar]
  8. Blair, T. (1999a) Cause of dominance by sheetflood vs. debrisflow processes on two adjoining alluvial fans, death valley, California. Sedimentology, 46, 1015–1028.
    [Google Scholar]
  9. Blair, T. (1999b) Sedimentary processes and facies of the waterlaid anvil spring canyon alluvial fan, death valley, California. Sedimentology, 46, 913–940.
    [Google Scholar]
  10. Blair, T. (1999c) Sedimentology of the debris‐fow‐dominated warm spring canyon alluvial fan, death valley, California. Sedimentology, 46, 941–965.
    [Google Scholar]
  11. Blissenbach, E. (1954) Geology of alluvial fans in semi‐arid regions. Geol. Soc. Am. Bull., 65, 175–190.
    [Google Scholar]
  12. Braucher, R., Brown, E., Bourlès, D. & Colin, F. (2003) In situ produced 10Be measurements at great depths: implications for production rates by fast muons. Earth. Planet. Sci. Lett.211, 251–258.
    [Google Scholar]
  13. Braucher, R., Siame, L., Bourlès, D. & Colin, F. (2009) Determination of both exposure time and denudation rate from an in situ‐produced 10Be depth profile: a mathematical proof of uniqueness. Model sensitivity and applications to natural cases. Quat. Geochronol.4, 56–67.
    [Google Scholar]
  14. Braucher, R., Merchel, S., Borgomano, J. & Bourlès, D.L. (2011) Production of cosmogenic radionuclides at great depth: a multi element approach. Earth Planet. Sci. Lett., 309, 1–9.
    [Google Scholar]
  15. Brown, E.T., Stallard, R.F., Larsen, M., Raisebeck, G.M. & Yiou, F. (1995) Denudation rates determined from the accumulation of in situ‐produced 10Be in the Luquillo experimental forest, Puerto Rico. Earth Planet. Sci. Lett., 129, 193–202.
    [Google Scholar]
  16. Bull, W. (1964) Geomorphology of Segmented Alluvial Fans in Western Fresno County. U.S. Geological Survey Professional Paper 352‐E, California. pp. 89–129.
    [Google Scholar]
  17. Cahill, T. & Isacks, B.L. (1992) Seismicity and shape of the subducted Nazca plate. J. Geophys. Res., 97, 17503–17529.
    [Google Scholar]
  18. Carretier, S. & Lucazeau, F. (2005) How does alluvial sedimentation at range fronts modify the erosional dynamics of mountain catchments?. Basin. Res., 17, 361–381.
    [Google Scholar]
  19. Charrier, R., Baeza, ., Elgueta, S., Flynn, J., Gans, P., Kay, S., Munoz, N., Wyss, A. & Zurita, E. (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat‐slab segment, southern Central Andes, Chile (33‐36S.L). J. of South Am. Ear. Sci., 15, 117–139.
    [Google Scholar]
  20. Chmeleff, J., von Blanckenburg, F., Kossert, K. & Jakob, D. (2010) Determination of the Be‐10 half‐life by multicollector ICP‐MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. B, 263(2), 192–199.
    [Google Scholar]
  21. Clapperton, C. (1983) The glaciation of the Andes. Quat. Sci. Rev., 2, 83–155
    [Google Scholar]
  22. Clarke, L., Quine, T.A. & Nicholas, A. (2010) An experimental investigation of autogenic behaviour during alluvial fan evolution. Geomorphology, 15, 278–285.
    [Google Scholar]
  23. Codilean, A. (2006) Calculation of the cosmogenic nuclide production topographic shielding scaling factor for large areas using DEMs. Earth Surf. Proc. Land., 31(6), 785–794.
    [Google Scholar]
  24. Condom, T., Coudrain, A., Sicart, J. & Thiry, S. (2007) Computation of the space and time evolution of equilibrium‐line altitudes on Andean glaciers (10∘S). Glob. Planet. Change, 59, 189–202.
    [Google Scholar]
  25. Cristallini, E., Boggeti, D., Regazzoni, C., Anzulovich, L., Cerdan, J., Ayala, M., Scolari, J. & Leiro, F. (2000) Cuenca Cuyana. Intrepretacion Estructural Regional. Repsol‐YPF, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.
    [Google Scholar]
  26. D'Antoni, H. (1983) Pollen analysis of Gruta del Indio. Quat. South America Antarctic Peninsula, 1, 83–104.
    [Google Scholar]
  27. Densmore, A., Allen, P. & Simpson, G. (2007) Development and response of a coupled catchment fan system under changing tectonic and climatic forcing. J. Geophys. Res., 112, F01002, doi:10.1029/2006JF000474.
    [Google Scholar]
  28. Dühnforth, M., Densmore, A., Ivy‐Ochs, S. & Allen, P. (2008) Controls on sediment evacuation from glacially modified and unmodified catchments in the eastern Sierra Nevada, California. Earth Surf. Proc. Land., 33, 1602–1613.
    [Google Scholar]
  29. Eckis, R. (1928) Alluvial fans of the Cucamonga district southern California. J. Geol., 36, 224–247.
    [Google Scholar]
  30. Espizua, L. (1999) Chronology of late Pleistocene glacier advances in the rio Mendoza valley, Argentina. Glob. Planet. Change, 22, 193–200.
    [Google Scholar]
  31. Espizua, L. (2004) Pleistocene glaciations in the Mendoza Andes, Argentina. In: Quaternary Glaciations – Extent and Chronology (Ed. by Ehlers, J. & Gibbard, P. ), pp. 69–73. Elseviers III, Cambridge.
    [Google Scholar]
  32. Farías, M., Charrier, Carretier, S., Martinod, J., Fock, A., Campbell, D., Caceres, J. & Comte, D. (2008) Late Miocene high and rapid surface uplift and its erosional response in the Andes of Central Chile (33–35S). Tectonics, 27, TC1005. doi:10.1029/2006TC002046
    [Google Scholar]
  33. Farías, M., Comte, D., Charrier, R., Martinod, J., David, C., Tassara, A., Tapia, F. & Fock, A. (2010) Crustal‐scale structural architecture in central Chile based on seismicity and surface geology: implications for Andean mountain building. Tectonics, 29, TC3006. doi:10.1029/2009TC002480
    [Google Scholar]
  34. Farr, T., Rosen, P., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D. & Alsdorf, D. (2007) The Shuttle Radar Topography Mission Rev. Geophysics, 45, RG2004, doi: 10.1029/2005RG000183.
    [Google Scholar]
  35. Gabet, E., Burbank, D., Pratt‐Sitaula, B. & Putkonen, J. (2008) Modem erosion rates in the High Himalayas of Nepal. Earth Planet. Sci. Lett., 267(3‐4), 482–494.
    [Google Scholar]
  36. García, V. (2004) Analisis Estructural y Neotectnico de las Lomas Jaboncillo y del Perral, Departamento de Tupungato, Provincia de Mendoza. Licenciatura, Facutad de ciencias Exactas y Naturales, Universidad de Buenos Aires.
  37. Giambiagi, L., Ramos, V., Godoy, E., Alvarez, P.P. & Orts, S. (2003) Cenozoic deformation and tectonic style of the Andes, between 33 and 34 South latitude. Tectonics, 22‐4, 1041, doi:10.1029/2001TC001354.
    [Google Scholar]
  38. Giambiagi, L., Tunik, M.A. & Ghiglione, M. (2001) Cenozoic tectonic evolution of the alto tunuyán foreland basin above the transition zone between the flat and normal subduction segment (33∘ 30'–34∘ ), western Argentina. J. South Am. Ear. Sci., 14, 701–724.
    [Google Scholar]
  39. Granger, D., Kircher, J. & Finkel, R. (1996) Spatially averaged long‐term erosion rates measured from in situ‐produced cosmogenic nuclides in alluvial sediment. J. Geol., 104, 249–257.
    [Google Scholar]
  40. Harrison, S. (2004) The Pleistocene glaciations of Chile. In: Quaternary Glaciations – Extent and Chronology (Ed. by J., Ehlers & P., Gibbard ), pp. 89–103. Vol. III. Elseviers, Amsterdam.
    [Google Scholar]
  41. Harvey, A. (1999) The impact of quaternary sea‐level and climatic change on coastal alluvial fans in the Cabo de Gata ranges, southeast Spain. Geomorphology, 28, 1–22.
    [Google Scholar]
  42. Heimsath, A.M., Chappell, J., Spooner, N.A. & Questiaux, D.G. (2002) Creeping soil. Geology, 30–2, 111–114.
    [Google Scholar]
  43. Hoffmann, J. (1975) Atlas climàtico de América del Sur: scales 1:10,000,000 and 1:50,00,000. World Meteorological Organization 28.
  44. Hooke, R (1968) Steady‐state relationships on arid region alluvial fans in closed basins. Am. J. Sci., 266, 609–629.
    [Google Scholar]
  45. Humphrey, N., Heller, P. (1995) Natural oscillations in coupled geomorphic systems: an alternative origin for cyclic sedimentation. Geology, 23, 499–502.
    [Google Scholar]
  46. Irigoyen, M.V., Buchan, K.L., Villeneuve, M.E. & Brown, R.L. (2002) Cronolog'a y significado tectònico de los estratos sinorogènicos neògenos aflorantes en la regiòn de Cacheuta‐Tupungato, provincia de Mendoza. Asociaciòn Geològica Argentina, 57(1), 3–18.
    [Google Scholar]
  47. Kim, W. & Jerolmack, D. (2008) The pulse of calm fan deltas. J. Geol., 116(4), 315–330.
    [Google Scholar]
  48. Korschinek, G., Bergmaier, A., Dillmann, I., Faestermann, T., Gerstmann, U., Knie, K., von Gostomski, C., Maiti, M., Poutivtsev, M., Remmert, A., Rugel, G. & Wallner, A. (2009) Determination of the Be‐10 half‐life by HI‐ERD and liquid scintillation counting. Geochim. Cosmochim. Acta, 73, A685.
    [Google Scholar]
  49. Kull, C., Imhof, S., Grosjean, M., Zech, R. & Veit, H. (2008) Late Pleistocene glaciation in the Central Andes: temperature versus humidity control: a case study from the eastern Bolivian Andes (17∘ S) and regional synthesis. Glob. Planet. Change, 60, 148–164.
    [Google Scholar]
  50. Lavé, J. & Avouac, J.‐P. (2001) Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J. Geophys. Res., 106‐B11, 26, 561–26, 591.
    [Google Scholar]
  51. Le Dortz, K., Meyer, B., Sebrier, M., Braucher, R., Nazari, H., Benedetti, L., Fattahi, M., Bourlès, D., Foroutan, M., Siame, L., Rashidi, A. & Bateman, M.D. (2011) Dating inset terraces and offset fans along the Dehshir Fault (Iran) combining cosmogenic and OSL methods. Geophys. J. Int., 185, 1147–1174.
    [Google Scholar]
  52. Mehl, A.E. & Zárate, M.A. (2012) Late Pleistocene and Holocene environmental and climatic conditions in the eastern Andean piedmont of Mendoza (33–34S, Argentina). J. South Am. Ear. Sci., 37, 41–59.
    [Google Scholar]
  53. Merritts, D.J., Vincent, K.R. & Wohl, E.E. (1994) Long river profiles, tectonism, and eustasy: a guide to interpreting fluvial terraces. J. Geophys. Res., 99, 14,031–14,050.
    [Google Scholar]
  54. Muto, T. & Steel, R.J. (2004) Autogenic response of fluvial deltas to steady sea‐level fall: implications from flume‐tank experiments. Geology, 32, 401–404.
    [Google Scholar]
  55. Nicholas, A. & Quine, T. (2007) Modeling alluvial landform change in the absence of external environmental forcing. Geology, 35, 527–530.
    [Google Scholar]
  56. Ono, Y. (1990) Alluvial fans in Japan and South Korea. In: Alluvial Fans: A Field Approach (Ed. by A.H.Rachocki & M.Church ) pp. 247–269. J. Wiley and Sons Ltd, New York.
    [Google Scholar]
  57. Pepin, E., Carretier, S. & Hérail, G. (2010) Erosion dynamics modelling in a coupled catchment‐fan system with constant external forcing. Geomorphology, 122, 78–90.
    [Google Scholar]
  58. Perg, L., Anderson, R. & Finckel, R. (2001) Use of a new 10Be and 26Al inventory method to date marine terraces, Santa Cruz, California, USA. Geology, 29‐10, 879–882.
    [Google Scholar]
  59. Pisias, N. & Moore, T. (1981) The evolution of the Pleistocene climate: a time series approach. Earth Planet. Sci. Lett., 52, 450–458.
    [Google Scholar]
  60. Poisson, B. & Avouac, J.‐P. (2004) Holocene hydrological changes inferred from alluvial stream entrenchment in North Tian Shan (Northwestern China). J. Geol., 112, 231–249.
    [Google Scholar]
  61. Polanski, J. (1963) Estatigrafia, Neotectonica y Geomorphologia del Pleistoceno pedemontano entre los rios Diamante y Mendoza, provincia de Mendoza. Rev. Asoc. Geol. Argent., 17‐3/4, 127–349.
    [Google Scholar]
  62. Powell, E., Kim, W. & Muto, T. (2012) Varying discharge controls on timescales of autogenic storage and release processes in fluvio‐deltaic environments: tank experiments. J. Geophys. Res., 117, F02011, doi:10.1029/2011JF002097..
    [Google Scholar]
  63. Quigley, M., Sandiford, M. & Cupper, M. (2007) Distinguishing tectonic from climatic controls on range‐front sedimentation. Basin Res., 19, 491–505.
    [Google Scholar]
  64. Ramos, V.A., Cristallini, E.O. & Pérez, D.J. (2002) The Pampean flat‐slab of the central Andes. J. South Am. Ear. Sci., 15(1), 59–78.
    [Google Scholar]
  65. Raymo, M., Lisiecki, L. & Nisancioglu, K. (2006) Plio‐Pleistocene ice volume, antarctic climate, and the global d18o record. Science, 313, 492–495.
    [Google Scholar]
  66. Regard, V., Bellier, O., Braucher, R., Gasse, F., Bourlès, D., Mercier, J., Thomas, J., Abbassi, M., Shabanian, E. & Soleymani, S. (2006) 10Be dating of alluvial deposits from southeastern Iran (the Hormoz Strait area). Palaeogeography Palaeoclimatol. Palaeoecol., 242, 36–53.
    [Google Scholar]
  67. Reitz, M.D., Jerolmack, D.J. & Swenson, J.B. (2010) Flooding and flow path selection on alluvial fans and deltas. Geophys. Res. Lett., 37, L06401.
    [Google Scholar]
  68. Ritz, J.‐F., Vassallo, R., Braucher, R., Brown, E.T., Carretier, S. & Bourlès, D.L. (2006) Using in situ produced 10Be to quantify active tectonics in the Gurvan Bogd mountain range (Gobi‐Altay, Mongolia). GEOL S AM S., 415, 87–110.
    [Google Scholar]
  69. Siame, L. & Bellier, O. (2006) A seismotectonic model for the Argentine Precordillera and the western Sierras Pampeanas. Rev. Asoc. Geol. Argent., 61(4), 604–619.
    [Google Scholar]
  70. Siame, L., Bellier, O., Braucher, R., Sébrier, M., Cushing, M., Bourlès, D., Hamelin, B., Baroux, E., de Voogd, B., Raisbeck, G. & Yiou, F. (2004) Local erosion rates versus active tectonics: cosmic ray exposure modelling in Provence (south‐east France). Earth. Planet. Sci. Lett., 220, 345–364
    [Google Scholar]
  71. Siame, L., Bellier, O., Sébrier, M. & Araujo, M. (2005) Deformation partitioning in flat subduction setting: the case of the Andean foreland of Western Argentina (28S). Tectonics, 24, TC5003, doi:10.1029/2005TC001787.
    [Google Scholar]
  72. Siame, L., Braucher, R. & Bourlès, D. (2000) Les nucléides cosmogéniques produits in‐situ: de nouveaux outils en géomorphologie quantitative. Bull. Soc. Géol. France, 171, 383–396.
    [Google Scholar]
  73. Singh, V. & Tandon, S. (2010) Integrated analysis of structures and landforms of an intermontane longitudinal valley (Pinjaur Dun) and its associated mountain fronts in the NW Himalaya. Geomorphology, 114, 573–589.
    [Google Scholar]
  74. Smith, J.A., Seltzer, G.O., Rodbell, D.T. & Klein, A.G. (2005) Regional synthesis of last glacial maximum snowlines in the tropical Andes, South America. Quat. Int., 138‐139, 145–167.
    [Google Scholar]
  75. Staley, D.M., Wasklewicz, T.A. & Blaszczynski, J.S. (2006) Surficial patterns of debris flow deposition on alluvial fans in Death Valley, CA using airborne laser swath mapping data. Geomorphology, 74, 152–163.
    [Google Scholar]
  76. Stauder, W. (1975) Subduction of the Nazca plate under Peru as evidenced by focal mechanism and by seismicity. J. Geophys. Res., 80, 1053–1064.
    [Google Scholar]
  77. Stone, J. (2000) Air pressure and cosmogenic isotope production. J. Geophys. Res., 105, 23753–23759.
    [Google Scholar]
  78. Tucker, G.E. & Slingerland, R. (1997) Drainage basin responses to climate change. Wat. Resour. Res., 33, 2031–2047.
    [Google Scholar]
  79. Verges, J., Ramos, V.A., Meigs, A., Cristallini, E., Bettini, F.H. & Cortés, J.M. (2007) Crustal wedging triggering recent deformation in the Andean thrust front between 31∘ S and 33∘ S: Sierras Pampeanas‐Precordillera interaction. J. Geophys. Res., 112, B03S15, doi:10.1029/2006JB004287.
    [Google Scholar]
  80. Viseras, C., Calvache, M., Soria, J. & Fernandez, J. (2003) Differential features of alluvial fans controlled by tectonic or eustatic accommodation space. Examples from the Betic Cordillera, Spain. Geomorphology, 50, 181–202.
    [Google Scholar]
  81. Volker, H., Wasklewicz, T. & Ellis, M. (2007) A topographic fingerprint to distinguish alluvial fan formative processes. Geomorphology, 88, 34–45.
    [Google Scholar]
  82. Von Blanckenburg, F., Belshaw, N., O' Nions, R. (1996) Separation of 9Be and cosmogenic 10Be from environmental and SIMS isotope dilution analysis. Chemical Geology, 129(1,2), 93–99.
    [Google Scholar]
  83. Whipple, K.X., Dunne, T. (1992) The influence of debris‐flow rheology on fan morphology, Owens valley, California. Geol. Soc. Am. Bull., 104, 887–900.
    [Google Scholar]
  84. White, K. (1991) Geomorphological analysis of piedmont landforms in the Tunisian Southern Atlas using ground data and satellite imagery. Geogr. J., 157, 279–294.
    [Google Scholar]
  85. Wobus, C.W., Tucker, G., Anderson, R. (2010) Does climate change create distinctive patterns of landscape incision?J. Geophys. Res., 115, F04008, doi:10.1029/2009JF001562.
    [Google Scholar]
  86. Zárate, M. (2002) Geología y estratigrafía del Pleistoceno Tardio‐Holoceno en el piedemonte de Tunuyán‐Tupungato, Mendoza, Argentina. In: XV Congreso Geolgico Argentino, El Calafate (Ed. by N., Cabaleri , C., Cingolani , E., Linares , M., Lpez de Luchi , H., Ostera , and H., Panarello ) pp. 615–620. ACTAS II, Santa Cruz, Argentina.
    [Google Scholar]
  87. Zárate, M. & Mehl, A. (2008) Estratigrafá y geocronologá de los dépositos del Pleistoceno tardó‐Holoceno de la cuenca del Arroyo la Estacada, departamentos de Tunuyán y Tupungato (valle del Uco), Mendoza. Rev. Asoc. Geol. Argent., 63(3), 407–416.
    [Google Scholar]
  88. Zech, R., May, J., Kull, C., Ilgner, J., Kubik, P. & Veit, H. (2008) Timing of the late quaternary glaciation in the Andes from around 15 to 40∘S. J. Quatern. Sci., 23(6‐7), 635–647.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12019
Loading
/content/journals/10.1111/bre.12019
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error