1887
Volume 62 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Using numerical modelling, we investigate the evolution of seismoelectric effects induced by seismic excitation in spatially confined lithological units. Typical geometries represent clay lenses embedded in an aquifer or petroleum deposits in a host rock. In fluid‐saturated rocks, seismic waves can generate electromagnetic fields due to electrokinetic coupling mechanisms associated with such processes in the vicinity of the fluid‐mineral interface. Two seismoelectric phenomena are investigated: (1) the co‐seismic field associated with the seismic displacement at each point in a subsurface and (2) the interface response generated at layer boundaries. Our modelling uses a simplified time‐domain formulation of the coupled problem and an efficient 2D finite‐element implementation. To gain insight into the morphogenetic field behaviour of the seismoelectric effects, several numerical simulations for various target geometries were treated. Accordingly, we varied both the thickness of the confined units and the value of the electrical bulk conductivity in porous media. Analysis of these effects shows differences between interface responses for electrically conductive versus resistive units. So the pertinent contrast in electrical bulk conductivity controls the shape and structure of these seismoelectric conversion patterns. Moreover, the seismoelectric interface response captures both the petrophysical and geometrical characteristics of the geological unit. These models demonstrate the value of using seismoelectric interface response for reservoir characterization in either hydrogeological or hydrocarbon exploration studies.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12020
2013-07-29
2024-04-26
Loading full text...

Full text loading...

References

  1. AllègreV., LehmannF., AckererP., JouniauxL. and SailhacP.2012. A 1‐D modelling of streaming potential dependence on water content during drainage experiment in sand. Geophysical Journal International189, 285–295.
    [Google Scholar]
  2. ArajiA.H., RevilA., JardaniA., MinsleyB.J., and KaroulisM.2012. Imaging with cross‐hole seismoelectric tomography. Geophysical Journal International188, 1285–1302.
    [Google Scholar]
  3. BiotM.A.1956. Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low‐frequency range. Journal of the Acoustical Society of America28, 168–178.
    [Google Scholar]
  4. BordesC., JouniauxL., DietrichM., PozziJ.‐P. and GaramboisS.2006. First laboratory measurements of seismo‐magnetic conversions in fluid‐filled fontainbleau sand. Geophysical Research Letters33, L01302.
    [Google Scholar]
  5. BordesC., JouniauxL., GaramboisS., DietrichM., PozziJ.‐P. and GaffetS.2008. Evidence of the theoretically predicted seismo‐magnetic conversion. Geophysical Journal International174, 489–504.
    [Google Scholar]
  6. ButlerK.E., RussellR.D., KepicA.W. and MaxwellM.1996. Measurement of the seismoelectric response from a shallow boundary. Geophysics61, 1769–1778.
    [Google Scholar]
  7. CourantR., FriedrichsK.O. and LewyH.1956. On the partial difference equations of mathematical physics. IBM Journal11, 215–234.
    [Google Scholar]
  8. De GrootS.R.1960. Thermodynamik irreversibler Prozesse. Bibliographisches Institut AG, Mannheim.
    [Google Scholar]
  9. DupuisJ.C., ButlerK.E. and KepicA.W.2007. Seismoelectric imaging of the vadose zone of a sand aquifer. Geophysics72, A81–A85.
    [Google Scholar]
  10. DupuisJ.C., ButlerK.E., KepicA.W. and HarrisB.D.2009. Anatomy of a seismoelectric conversion: Measurements and conceptual modeling in boreholes penetrating a sandy aquifer. Journal of Geophysical Research114.
    [Google Scholar]
  11. EdelmanI.2003. Bifurcation of the Biot slow wave in a porous medium. Journal of the Acoustical Society of America114,90–97.
    [Google Scholar]
  12. GaramboisS. and DietrichM.2002. Full waveform numerical simulations of seismoelectromagnetic wave conversions in fluid‐saturated stratified porous media. Journal of Geophysical Research107, ESE 5 1–18.
    [Google Scholar]
  13. GrootS. and MazurP.1984. Non‐equilibrium Thermodynamics. Dover, New York.
    [Google Scholar]
  14. GurevichB., KelderO. and SmeuldersD.M.J.1999. Validation of the slow compressional wave in porous media: comparison of experiments and numerical simulations. Transport in Porous Media36, 149–160.
    [Google Scholar]
  15. HaartsenM.W. and PrideS.1997. Electroseismic waves from point sources in layered media. Journal of Geophysical Research102, 24.745–24.769.
    [Google Scholar]
  16. HainesS.S.2004. Seismoelectric imaging of shallow targets. PhD thesis, Stanford University.
    [Google Scholar]
  17. HainesS.S. and PrideS.2006. Seismoelectric numerical modeling on a grid. Geophysics71, N57–65.
    [Google Scholar]
  18. HanQ. and WangZ.2001. Time‐domain simulation of SH‐wave‐induced electromagnetic field in heterogeneous porous media: A fast finite‐element algorithm. Geophysics66, 448–461.
    [Google Scholar]
  19. JacksonJ.D.1998. Classical Electrodynamics. Wiley, New York.
    [Google Scholar]
  20. JardaniA., RevilA., SlobE. and SöllnerW.2010. Stochastic joint inversion of 2D seismic and seismoelectric signals in linear poroelastic materials. A numerical investigation. Geophysics75, N19–N31.
    [Google Scholar]
  21. KaufmanA.A.1994. Geophysical field theory and method. Academic Press, Inc.
    [Google Scholar]
  22. KrögerB., YaramanciU. and KemnaA.2009a. Modeling of seismoelectric effects. European COMSOL Conference 2008 Hannover. Proceedings on CD‐ROM.
  23. KrögerB., YaramanciU. and KemnaA.2009b. Finite‐element modelling of coupled seismoelectromagnetic wave propagation using u‐p formulation. 71st EAGE Conference & Exhibition incorporating SPE EUROPEC 2009, Amsterdam, 08–11 June 2009.
  24. LorrainP., CorsonD.R. and LorrainF.1988. Electromagnetic Fields and Waves including Electric Circuits. W.H. Freeman and Company, New York.
    [Google Scholar]
  25. MikhailovO.V., HaartsenM.W. and ToksözM.N.1997. Electroseismic investigation of shallow subsurface: Field measurements and numerical modeling. Geophysics62, 97–105.
    [Google Scholar]
  26. MitchellJ.K. and SogaK.2005. Fundamentals of soil behavior. 3rd ed., John Wiley & Sons, Hoboken, New Jersey.
    [Google Scholar]
  27. NagyP.B.1999. Acoustics and ultrasonics. Experimental Methods in the Physical Sciences. Academic New York, 161–221.
    [Google Scholar]
  28. PrideS.R.1994. Governing equations for the coupled electromagnetics and acoustics of porous media. Physical Reviews B50, 15678–15696.
    [Google Scholar]
  29. PrideS.R. and GaramboisS.2002. The role of Biot slow waves in electroseismic wave phenomena. Acoustical Society of America111 (2), 697–706.
    [Google Scholar]
  30. PrideS.R. and HaartsenM.W.1996. Electroseismic wave properties. Journal of the Acoustical Society of America100, 1301–1315.
    [Google Scholar]
  31. PrideS.R. and MorganF.D.1991. Electrokinetic dissipation induced by seismic waves. Geophysics56, 914–925.
    [Google Scholar]
  32. RevilA., PezardP.A. and GloverP.W.J.1999. Streaming potential in porous media. 1. Theory of the zeta‐potential. Journal of Geophysical Research104(B9), 20,021–20,031.
    [Google Scholar]
  33. RevilA. and FlorschN.2010. Determination of permeability from spectral induced polarization data in granular media. Geophysical Journal International181, 1480–1498.
    [Google Scholar]
  34. RevilA. and JardaniA.2010. Seismoelectric response of heavy oil reservoirs: theory and numerical modelling. Geophysical Journal International180, 781–797.
    [Google Scholar]
  35. RevilA. and LindeN.2006. Chemico‐electromechanical coupling in microporous media. Journal of Colloid and Interface Sciences302, 682–694.
    [Google Scholar]
  36. SchanzM.2001. Wave propagation in viscoelastic and poroelastic continua. Springer Verlag, Berlin, Heidelberg, New York.
    [Google Scholar]
  37. StrahserM., RabbelW. and SchildknechtF.2007. Near Surface Geophysics97–114.
    [Google Scholar]
  38. ThompsonA.H. and GistG.A.1993. Geophysical applications of electrokinetic conversion. The Leading edge12, 1169–1173.
    [Google Scholar]
  39. WangH.F.2000. Theory of Linear Poroelasticity. Princeton University Press, Princeton, New Jersey.
    [Google Scholar]
  40. WurmstichB. and MorganF.D.1994. Modeling of streaming potential responses caused by oil well pumping. Geophysics59,46–56.
    [Google Scholar]
  41. ZhuZ. and ToksözM.N.2005. Seismoelectric and seismomagnetic measurements in fractured borehole models. Geophysics70(4), F45–F51.
    [Google Scholar]
  42. ZienkiewiczO.C., ChanC.T. and BettessP.1980. Drained, undrained, consolidating and dynamic behaviour assumptions in soils. Géotechnique30(4), 385–395.
    [Google Scholar]
  43. ZienkiewiczO.C., ChanA.H.C., PastorM., SchreflerB.A. and ShiomiT.1999. Computational geomechanics. John Wiley & Sons, Chichester, New York.
    [Google Scholar]
  44. ZysermanF.I., GauzellinoP.M. and SantosJ.E.2010. Finite element modeling of SHTE and PSVTM electroseismics. Journal of applied geophysics72, 79–91.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12020
Loading
/content/journals/10.1111/1365-2478.12020
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Electrokinetic coupling; Numerical modelling; Seismoelectrics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error