1887
Volume 12 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604
PDF

Abstract

ABSTRACT

The development and validation of hierarchic monitoring concepts is essential for detecting and assessing possible leakages from storage formations, especially for carbon capture and storage (CCS) applications. Joint interpretation of various techniques (such as carbon dioxide (CO) concentration and flux measurements, self‐potential (SP) and geoelectrical surveys) showed that the combination of geophysical methods with soil‐gas analysis for mesoscale monitoring of the shallow subsurface above geologic CO storages can be a valuable tool for mapping and monitoring potential CO spread in the subsurface. Three measurement campaigns were undertaken – May 2011, July 2011 and April 2012 – at an analogue site in the Cheb Basin, Czech Republic, with the aim of studying CO leakages and their temporal and spatial behaviour. Results of geoelectrical investigations give an insight into the structural features of the subsurface. CO discharge into the atmosphere is mostly impeded by shallow, clay‐rich, partly water‐saturated zones, which can be seen in the electrical resistivity tomography (ERT) results. Several transport processes can be identified based on SP measurements. The SP results highlight the complex behaviour of temporal variations for the flow patterns. In particular, coupled migration of gas and water plays an important influencing role in this process. Site‐specific, near surface geological features and meteorological conditions seem to exert great influence on the degassing pattern and measured CO values. Therefore, soil‐gas measurements represent a snapshot which illustrates both a distinct typical pattern of the soil‐gas distribution in the near subsurface and certain differences caused by soil and meteorological conditions. Observed CO soil‐gas anomalies and modelled results suggest that the occurrence of gas discharge is much more localized around restricted areas, often controlled by local permeability contrasts. Hence, our results show that a proposed monitoring concept should integrate SP, time‐lapse ERT, meteorological parameters and soil‐gas measurements to provide a comprehensive insight into the subsurface structures and processes.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2013052
2013-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/nsg/12/1/nsg2013052.html?itemId=/content/journals/10.3997/1873-0604.2013052&mimeType=html&fmt=ahah

References

  1. AizawaK.2008. Classification of self‐potential anomalies on volcanoes and possible interpretations for their subsurface structure. Journal of Volcanology and Geothermal Research175, 253–268. doi:10.1016/j. jvolgeores.2008.03.011
    [Google Scholar]
  2. AnnunziatellisA., BeaubienS.E., BigiS., CiotoliG., ColtellaM. and LombardiS.2008. Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy): implications for CO2 geological storage. International Journal of Greenhouse Gas Control2, 353–372. doi: 10.1016/j.ijggc.2008.02.003
    [Google Scholar]
  3. BallL., GeS., CaineJ., RevilA. and JardaniA.2010. Constraining faultzone hydrogeology through integrated hydrological and geoelectrical analysis. Hydrogeology Journal18, 1057–1067. doi: 10.1007/ s10040‐010‐0587‐z
    [Google Scholar]
  4. BankwitzP., SchneiderG., KämpfH. and BankwitzE.2003. Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic). Journal of Geodynamics35, 5–32. doi: 1016/ S0264‐3707(02)00051‐0
    [Google Scholar]
  5. BattaniA., DevilleE., FaureJ.L., JeandelE., NoirezS., TocquéE.et al. 2010. Geochemical study of natural CO2 emissions in the French Massif Central: how to predict origin, processes and evolution of CO2 leakage. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles65, 615–633. doi: 10.2516/ogst/2009052
    [Google Scholar]
  6. BennatiL., FinizolaA., WalkerJ.A., LopezD.L., Higuera‐DiazI.C., SchützeC.et al. 2011. Fluid circulation in a complex volcano‐tectonic setting, inferred from self‐potential and soil CO2 flux surveys: The Santa María‐Cerro Quemado‐Zunil volcanoes and Xela caldera (Northwestern Guatemala).Journal of Volcanology and Geothermal Research199(3–4), 216–229. doi: 10.1016/j.jvolgeores.2010.11.008
    [Google Scholar]
  7. BolèveA., RevilA., JanodF., MattiuzzoJ.L. and FryJ.‐J.2009. Preferential fluid flow pathways in embankment dams imaged by self‐potential tomography. Near Surface Geophysics7(5), 447–462. doi: 10.3997/1873‐0604.2009012
    [Google Scholar]
  8. BörnerJ.H., HerdegenV., RepkeJ.‐U. and SpitzerK.2012. The impact of CO2 on the electrical properties of water bearing porous media – laboratory experiments with respect to carbon capture and storage. Geophysical Prospecting61. doi: 10.1111/j.1365‐2478.2012.01129.x
    [Google Scholar]
  9. BräuerK., KämpfH., NiedermannS., StrauchG. and TesarJ.2008. Natural laboratory NW Bohemia: Comprehensive fluid studies between 1992 and 2005 used to trace geodynamic processes. Geochemistry Geophysics Geosystems9, Q04018. doi:10.1029/2007GC001921
    [Google Scholar]
  10. BräuerK., KämpfH., KochU. and StrauchG.2011. Monthly monitoring of gas and isotope compositions in the free gas phase at degassing locations close to the Novy Kostel focal zone in the western Eger Rift, Czech Republic. Chemical Geology290, 163–176. doi: 10.1016/j. chemgeo.2011.09.012
    [Google Scholar]
  11. ByrdinaS., RevilA., PantS.R., KoiralaB.P., ShresthaP.L., TiwariD.R.et al. 2009. Dipolar self‐potential anomaly associated with carbon dioxide and radon flux at Syabru‐Bensi hot springs in central Nepal. Journal of Geophysical Research: Solid Earth114, B10101. doi: 10.1029/2008JB006154
    [Google Scholar]
  12. CarapezzaM.L., RicciT., RanaldiM. and TarchiniL.2009. Active degassing structures of Stromboli and variations in diffuse CO2 output related to the volcanic activity. Journal of Volcanology and Geothermal Research182, 231–245. doi: 10.1016/j.jvolgeores.2008.08.006
    [Google Scholar]
  13. ChiodiniG., CioniR., GuidiM., MariniL. and RacoB.1998. Soil CO2 flux measurements in volcanic and geothermal areas. Applied Geochemistry13, 543–552. doi: 10.1016/S0883‐2927(97)00076‐0
    [Google Scholar]
  14. ChiodiniG., CaliroS., CardelliniC., AvinoR., GranieriD. and SchmidtA.2008. Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic‐hydrothermal area. Earth and Planetary Science Letters274, 372–379.
    [Google Scholar]
  15. CiotoliG., EtiopeG., GuerraM. and LombardiS.1999. The detection of concealed faults in the Ofanto Basin using the correlation between soil‐gas fracture surveys. Tectonophysics301, 321–332. doi: 10.1016/ S0040‐1951(98)00220‐0
    [Google Scholar]
  16. CortisA., OldenburgC.M. and BensonS.M.2008. The role of optimality in characterizing CO2 seepage from geologic carbon sequestration sites. International Journal of Greenhouse Gas Control2, 640–652. http://escholarship.org/uc/item/4bx404p5
    [Google Scholar]
  17. DahlinT. and ZhouB.2004. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting52, 379–398.
    [Google Scholar]
  18. DavidsonE.A. and TrumboreS.E.1995. Gas diffusivity and production of CO2 in deep soils of the eastern Amazon. Tellus47B, 550–565.
    [Google Scholar]
  19. DavisC.A., SlaterL.D., KulessaB., FergusonA., AtekwanaE.A., DohertyR. and KalinR.2010. Self‐potential signatures associated with an injection experiment at an in‐situ biological permeable reactive barrier. Near Surface Geophysics8, 541–551. doi: 10.3997/1873‐0604.2010034
    [Google Scholar]
  20. Doff SottaE., MeirP., MalhiY., Donato NobreA., HodnettM. and GraceJ.2004. Soil CO2 efflux in a tropical forest in the central Amazon. Global Change Biology10, 601–617. doi:10.1111/j.1529‐8817.2003.00761.x
    [Google Scholar]
  21. EtiopeG. and LombardiS.1995. Evidence for radon transport by carrier gas through faulted clays in Italy. Journal of Radioanalytical and Nuclear Chemistry193, 291–300. doi: 10.1007/BF02039886.
    [Google Scholar]
  22. EtiopeG., GuerraM. and RaschiA.2005. Carbon dioxide and radon geohazards over a gas‐bearing fault in the Siena Graben (Central Italy). Terrestrial Atmospheric and Oceanic Sciences16, 885–896.
    [Google Scholar]
  23. European Parliament and the Council
    European Parliament and the Council . 2009. DIRECTIVE 2009/31/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 April 2009 on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/ EC and Regulation (EC) No 1013/2006.
    [Google Scholar]
  24. FangC. and MoncrieffJ.B.1999. A model for soil CO2 production and transport 1: Model development. Agricultural and Forest Meteorology95, 225–236. doi: 10.1016/S0168‐1923(99)00036‐2
    [Google Scholar]
  25. FinizolaA., LenatJ.‐F., MacedoO., RamosD., ThouretJ.‐C. and SortinoF.2004. Fluid circulation and structural discontinuities inside Misti volcano (Peru) inferred from self‐potential measurements. Journal of Volcanology and Geothermal Research135, 343–360. doi: 10.1016/j.jvolgeo‐ res.2004.03.009
    [Google Scholar]
  26. FinizolaA., RevilA., RizzoE., PiscitelliS., RicciT., MorinJ.et al. 2006. Hydrogeological insights at Stromboli volcano (Italy) from geoelectrical, temperature, and CO2 soil degassing investigations. Geophysical Research Letters33, L17304. doi: 10.1029/2006GL026842
    [Google Scholar]
  27. FinizolaA., AubertM., RevilA., SchützeC. and SortinoF.2009. Importance of structural history in the summit area of Stromboli during the 2002‐2003 eruptive crisis inferred from temperature, soil CO2, self‐potential, and electrical resistivity tomography. Journal of Volcanology and Geothermal Research183, 213–227. doi:10.1016/j.jvolgeo‐res.2009.04.002
    [Google Scholar]
  28. FlechardC.R., NeftelA., JocherM., AmmannC., LeifeldJ. and FuhrerJ.2007. Temporal changes in soil pore space CO2 concentration and storage under permanent grasslandAgricultural and Forest Meteorology142, 66–84. doi: 10.1016/j.agrformet.2006.11.006.
    [Google Scholar]
  29. FlechsigCh., BussertR., RechnerJ., SchützeC. and KämpfH.2008. The Hartousov mofette field in the Cheb Basin, Western Eger Rift (Czech Republic): a comparative geoelectric, sedimentologic and soil gas study of a magmatic diffuse CO2‐degassing structure. Zeitschrift für Geologische Wissenschaften36, 177–193.
    [Google Scholar]
  30. FlechsigCh., FabigT., RückerC. and SchützeC.2010. Geoelectrical investigations in the Cheb Basin/W‐Bohemia: An approach to evaluate the near‐surface conductivity structure. Studia Geophysica et Geodaetica54, 443–463.
    [Google Scholar]
  31. GalF., MichelB., GillesB., FrédéricJ. and KarineM.2011. CO2 escapes in the Laacher See region, East Eifel, Germany: Application of natural analogue onshore and offshore geochemical monitoring. International Journal of Greenhouse Gas Control5(4), 1099–1118. doi:10.1016/j. ijggc.2011.04.004
    [Google Scholar]
  32. GüntherT., RückerC. and SpitzerK.2006. Three‐dimensional modelling and inversion of dc resistivity data incorporating topography ‐ II. Inversion. Geophysical Journal International166, 506–517. doi: 10.1111/j.1365‐246X.2006.03011.x
    [Google Scholar]
  33. HamadaY. and TanakaT.2001. Dynamics of carbon dioxide in soil profiles based on long‐term field observation. Hydrological Processes15, 1829–1845. doi:10.1002/hyp.242
    [Google Scholar]
  34. HaseH., IshidoT., TakakuraS., HashimotoT., SatoK. and TanakaY.2003. ζ‐potential measurement of volcanic rocks from Aso caldera. Geophysical Research Letters30(23), 2210. doi:10.1029/2003GL018694
    [Google Scholar]
  35. HashimotoS. and KomatsuH.2006. Relationships between soil CO2 concentration and CO2 production, temperature, water content, and gas diffusivity: implications for field studies through sensitivity analyses. Journal of Forest Research11(1), 41–50. doi: 10.1007/s10310‐005‐0185‐4
    [Google Scholar]
  36. HoffmannR. and DietrichP.2004. An approach to determine equivalent solutions to the geoelectrical 2D inversion problem. Journal of Applied Geophysics56, 79–91.
    [Google Scholar]
  37. HollowayS., PearceJ.M., HardsV.L., OhsumiT. and GaleJ.2007. Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide. Energy32, 1194–1201. doi:10.1016/j.energy.2006.09.001
    [Google Scholar]
  38. ItaokaK., SaitoA. and AkaiM.2004. Public Acceptance of CO2 Capture and Storage Technology: A Survey of Public Opinion to Explore Influential Factors. In: Proceedings of 7th International Conference on Greenhouse Gas Control Technologies. IEA Greenhouse Gas Programme, v. 1, (eds E.S.Rubin , D.W.Keith and C.F.Gilboy ). Peer‐Reviewed Papers and Overviews, Elsevier, Oxford.
    [Google Scholar]
  39. JarvisA., ReuterH.I., NelsonA. and GuevaraE.2008. Hole‐filled SRTM for the globe Version 4, available from the CGIAR‐CSI SRTM 90m Database (http://srtm.csi.cgiar.org).
    [Google Scholar]
  40. JassalR., BlackA., NovakM., MorgensternK., NesicZ. and Gaumont‐GuayD.2005. Relationship between soil CO2 concentrations and forest‐floor CO2 effluxes. Agricultural and Forest Meteorology130, 176–192. doi: 10.1016/j.agrformet.2005.03.005
    [Google Scholar]
  41. JohanssonS., RosqvistH., SvenssonM., DahlinT. and LerouxV.2011. An alternative methodology for the analysis of electrical resistivity data from a soil gas study. Geophysical Journal International186, 632–640. doi: 10.1111/j.1365‐246X.2011.05080.x
    [Google Scholar]
  42. KämpfH., BräuerK., SchumannJ., HahneK. and StrauchG.2012. CO2 discharge in an active, non‐volcanic continental rift area (Czech Republic): Characterisation (δ13C, 3He/4He) and quantification of diffuse and vent CO2 emissions. Chemical Geology339, 71–83. doi: 10.1016/j.chemgeo.2012.08.005
    [Google Scholar]
  43. KharakaY.K., ThordsenJ.J., KakourosE., AmbatsG., HerkelrathW.N., BirkholzerJ.T., AppsJ.A.et al. 2010. Changes in the Chemistry of Shallow Groundwater Related to the 2008 Injection of CO2 at the ZERT Field Site, Bozeman, Montana. Environmental Earth Sciences60(2), 273‐284. doi: 10.1007/s12665‐009‐0401‐1
    [Google Scholar]
  44. KlusmanRW.2003. Rate measurements and detection of gas microseepage to the atmosphere from an enhanced oil recovery/sequestration project, Rangely, Colorado, USA. Applied Geochemistry18, 1825–1838. doi: 10.1016/S0883‐2927(03)00108‐2
    [Google Scholar]
  45. KolditzO., BauerS., BeyerC., BöttcherN., DietrichP., GörkeU.‐J.et al. 2012. A systematic benchmarking approach for geologic CO2 injection and storage. Environmental Earth Sciences67(2), 613–632. doi:10.1007/s12665‐012‐1656‐5
    [Google Scholar]
  46. LamertH., GeistlingerH., WerbanU., SchützeC., PeterA., HornbruchG.et al. 2012. Feasibility of geoelectrical monitoring and multiphase modeling for process understanding of gaseous CO2 injection into a shallow aquifer. Environmental Earth Sciences67(2). doi: 10.1007/s12665‐012‐1669‐0
    [Google Scholar]
  47. LehtoH.L.2007. Self‐Potential Anomalies and CO2 Flux on Active Volcanoes: Insights from Time and Spatial Series at Masaya, Telica, and Cerro Negro.Nicaragua Thesis of Master of Science, Department of Geology, College of Arts and Sciences University of South Florida. URL: http://digital.lib.usf.edu:8080/fedora/get/usfldc:E14-SFE0002108/DOCUMENT
    [Google Scholar]
  48. LenatJ.‐F.2007. Retrieving self‐potential anomalies in a complex volcanic environment: an SP/elevation gradient approach. Near Surface Geophysics5(3), 161–170. doi: 10.3997/1873‐0604.2006028
    [Google Scholar]
  49. LewickiJ.L., ConnorC., St‐AmandK., StixJ. and SpinnerW.2003. Self‐potential, soil CO2 flux, and temperature on masaya volcano, nicaragua. Lawrence Berkeley National Laboratory: Lawrence Berkeley National Laboratory. URL: http://escholarship.org/uc/item/1m89q9hr
    [Google Scholar]
  50. LewickiJ.L., OldenburgC.M., DobeckL. and SpanglerL.2007. Surface CO2 leakage during two shallow subsurface CO2 releases. Geophysical Research Letters34, L24402. doi: 101029/2007GL032047.
    [Google Scholar]
  51. McCoyS.T and RubinE.S.2005. Models of CO2 Transport and Storage Costs and Their Importance in CCS Cost Estimates. In: Proceedings of the 4th Annual Conference on Carbon Capture and Sequestration,Alexandria, VA, 2005.
    [Google Scholar]
  52. MooreJ., AdamsM., AllisR., LutzS. and RauziS.2005. Mineralogical and geochemical consequences of the long‐term presence of CO2 in natural reservoirs: an example from the Springerville‐St. Johns Field, Arizona, and New Mexico, USA. Chemical Geology217, 365–385. doi: 10.1016/j.chemgeo.2004.12.019
    [Google Scholar]
  53. NguyenF., GaramboisS., ChardonD., HermitteD., BellierO. and JongmansO.2007. Subsurface electrical imaging of anisotropic formations affected by a slow active reverse fault, Provence, France. Journal of Applied Geophysics62, 338–355. doi: 10.1016/j.jappgeo.2007.03.003.
    [Google Scholar]
  54. NordenB.2011. Modelling of the near‐surface groundwater flow system at the CO2SINK site Ketzin, Germany, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (ZDGG) Band 162 Heft 1, 63–77. doi: 10.1127/1860‐1804/2011/0162‐0063
    [Google Scholar]
  55. PettinelliE., BeaubienS.E., ZajaA., MenghiniA., PraticelliN., MatteiE.et al. 2010. Characterization of a CO2 gas vent using various geophysical and geochemical methods. Geophysics75, B137–B146. doi:10.1190/1.3420735.
    [Google Scholar]
  56. PritchardD.T. and CurrieJ.A.1982. Diffusion of coefficients of carbon dioxide, nitrous oxide, ethylene and ethane in air and their measurement. Journal of Soil Science33, 175–184. doi: 10.1111/j.1365‐2389. 1982.tb01757.x
    [Google Scholar]
  57. ReinA., HoffmannR. and DietrichP.2004. Influence of natural timedependent variations of electrical conductivity on DC resistivity measurements. Journal of Hydrology285(1–4), 215–232. doi:10.1016/j.jhy‐drol.2003.08.015
    [Google Scholar]
  58. RennertT., EusterhuesK., PfanzH. and TotscheK.U.2011. Influence of geogenic CO2 on mineral and organic soil constituents on a mofette site in the NW Czech Republic. European Journal of Soil Science62, 572–580. doi: 10.1111/j.1365‐2389.2011.01355.x
    [Google Scholar]
  59. RevilA., PezardP.A. and GloverP.W.J.1999a. Streaming potential in porous media. 1. Theory of the zeta‐potential. Journal of Geophysical Research104(B9), 20,021–20,031. doi: 10.1029/1999JB900089.
    [Google Scholar]
  60. RevilA., SchwaegerH., CathlesL.M. and ManhardtP.1999b. Streaming potential in porous media. 2. Theory and application to geothermal systems. Journal of Geophysical Research104(B9), 20,033–20,048. doi: 10.1029/1999JB900090
    [Google Scholar]
  61. RevilA., FinizolaA., SortinoF. and RipepeM.2004. Geophysical investigations at Stromboli volcano, Italy. Implications for ground water flow. Geophysical Journal International157, 426–440. doi: 10.1111/ j.1365‐246X.2004.02181.x
    [Google Scholar]
  62. RevilA., FinizolaA., RicciT., DelcherE., PeltierA., Barde‐CabussonS.et al. 2011. Hydrogeology of Stromboli volcano, Aeolian Islands (Italy) from the interpretation of resistivity tomograms, self‐potential, soil temperature and soil CO2 concentration measurements. Geophysical Journal International186, 1078–1094. doi: 10.1111/ j.1365‐246X.2011.05112.x
    [Google Scholar]
  63. RückerC., GüntherTh. and SpitzerK.2006. Three‐dimensional modelling and inversion of dc resistivity data incorporating topography‐I. Modelling. Geophysical Journal International166, 495–505. doi:10.1111/j.1365‐246X.2006.03010.x
    [Google Scholar]
  64. SauerU., SchützeC., LevenC., SchlömerS. and DietrichP.2013. An integrative hierarchical monitoring approach applied at a natural analogue site to monitor CO2 degassing areas. Acta Geotechnica,1–7.doi:10.1007/s11440‐013‐0224‐9
    [Google Scholar]
  65. SchützeC., VienkenT., WerbanU., DietrichP., FinizolaA. and LevenC.2012a. Joint application of geophysical methods and Direct Push‐soil gas surveys for the improved delineation of buried fault zones. Journal of Applied Geophysics82, 129–136. doi: 10.1016/j.jap‐pgeo.2012.03.002
    [Google Scholar]
  66. SchützeC., SauerU., BeyerK., LamertH., BräuerK., StrauchG.et al. 2012b. Natural analogues – a potential approach for developing reliable monitoring methods to understand subsurface CO2 migration processes. Environmental Earth Sciences67. doi: 10.1007/s12665‐012‐1701‐4
    [Google Scholar]
  67. SinghA.K., GörkeU.J. and KolditzO.2011. Numerical simulation of non‐isothermal compositional gas flow: Application to carbon dioxide injection into gas reservoirs. Energy36, 3446–3458. doi: 10.1016/j.energy.2011.03.049
    [Google Scholar]
  68. SinghA.K., BaumannG., HenningesJ., GörkeU.J. and KolditzO.2012. Numerical analysis of thermal effects during carbon dioxide injection with enhanced gas recovery: a theoretical case study for the Altmark gas field. Environmental Earth Sciences67. doi: 10.1007/s12665‐012‐1689‐9
    [Google Scholar]
  69. van GardingenP.R., GraceJ., HarknessD.D., MigliettaF. and RaschiA.1995. Carbon dioxide emissions at an Italian mineral spring: measurements of average CO2 concentration and air temperature. Agricultural and Forest Meteorology73, 17–27. doi: 10.1016/0168‐1923(94)02176‐K
    [Google Scholar]
  70. VodnikD., KastelecD., PfanzH., MacekI. and TurkB.2006. Small‐scale spatial variation in soil CO2 concentration in a natural carbon dioxide spring and some related plant responses. Geoderma133(3–4), 309–319. doi:10.1016/j.geoderma.2005.07.016
    [Google Scholar]
  71. VoltattorniN., SciarraA., CaramannaG., CintiD., PizzinoL. and QuattrocchiF.2009. Gas geochemistry of natural analogues for the studies of geological CO2 sequestration. Applied Geochemistry24, 1339–1346. doi:10.1016/j.apgeochem.2009.04.026
    [Google Scholar]
  72. WagaiR., BryeK.R., GowerS.T., NormanJ.M. and BundyL.G.1998. Land use and environmental factors influencing soil surface CO2 flux and microbial biomass in natural and managed ecosystems in southern Wisconsin. Soil Biology and Biochemistry30(12), 1501–1509.
    [Google Scholar]
  73. WaliaV., LinS.J., FuC.C., YangT.F., HongW.L., WenK.L.et al. 2010. Soil‐gas monitoring: a tool for fault delineation studies along Hsinhua Fault (Taiwan), Southern Taiwan. Applied Geochemistry25, 602–607. doi: 10.1016/j.apgeochem.2010.01.017
    [Google Scholar]
  74. WannamakerP.E., CaldwellT.G., DoernerW.M. and JiracekG.R.2004. Fault zone fluids and seismicity in compressional and extensional environments inferred from electrical conductivity: the New Zealand Southern Alps. Earth Planets Space56, 1171–1176.
    [Google Scholar]
  75. YangT.F., ChouC.Y., ChenC.H., ChyiL.L. and JiangJ.H.2003. Exhalation of radon and its carrier gases in SW Taiwan. Radiation Measurements36, 425–429. doi:10.1016/S1350‐4487(03)00164‐1.
    [Google Scholar]
  76. YangT.F., WaliaV., ChyiL.L., FuC.C.et al. 2005. Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan. Radiation Measurements40, 496–502. doi:10.1016/j.radmeas.2005.05.017
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2013052
Loading
/content/journals/10.3997/1873-0604.2013052
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error