1887
Volume 26 Number 1
  • E-ISSN: 1365-2117

Abstract

Abstract

The transport of sediment from the mouth of the Indus River on to the deep‐water submarine fan is complicated by temporary storage within large clinoforms on the shelf on either side of the submarine canyon, where most of the sedimentation since the start of the Holocene has occurred. In contrast, shelf edge clinoform deltas represent the products of forced regression and not the progradation of highstand clinoforms as far as the shelf edge. Clinoform sediments have a mixed provenance that involves significant reworking of older sediment deposited during or before the last glacial maximum. Recent sedimentation in the canyon head has been very rapid in the last few centuries (. 10 cm year−1), but has been starved of sand probably because of 20th century damming. Sandy layers appear to represent annual monsoonal floods with a particularly large flood every 50–70 years. This canyon head sediment is also reworked by currents flowing along the canyon axis before being deposited deeper into the canyon. The last sandy sediment to reach the mid‐canyon (. 1300 m depth) was transported around 7000 year BP at a time of rising sea‐levels, and might reflect reworking by the transgression, or local slumping from the walls of the canyon. Dating of the uppermost in a series of terraces in the mid‐canyon area suggests that the canyon may have been partly filled and emptied of sediment at least three times since . 50 ka. We conclude from the Holocene record that sediment flux to the deep‐water fan experiences major buffering, reworking and recycling both on the shelf and within the submarine canyon prior to its deposition, so that turbidite sands in the deep Arabian Sea cannot be used to correlate with climatic or tectonic events onshore over timescales of 103–105 years.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12041
2014-01-17
2024-04-20
Loading full text...

Full text loading...

References

  1. Ahmed, Z. & Ernst, W.G. (1999) Island‐arc related, back arc basinal and oceanic island complexes of the Bela ophiolite‐mélange complex, Pakistan. Int. Geol. Rev., 41, 739–763. doi: 10.1080/00206819909465167.
    [Google Scholar]
  2. Amblas, D., Gerber, T.P., Mol, B.D., Urgeles, R., Garcia‐Castellanos, D., Canals, M., Pratson, L.F., Robb, N. & Canning, J. (2012) Survival of a submarine canyon during long‐term outbuilding of a continental margin. Geology, 40, 543–546. doi:10.1130/G33178.1.
    [Google Scholar]
  3. Arzola, R., Wynn, R., Lastras, G., Masson, D.G. & Weaver, P. (2008) Sedimentary features and processes in the Nazaré and Setúbal submarine canyons, west iberian margin. Mar. Geol., 250, 64–88.
    [Google Scholar]
  4. Balsam, W.L. & Deaton, B.C. (1996) Determining the composition of late Quaternary marine sediments from Nuv, Vis and Nir diffuse reflectance spectra. Mar. Geol., 134, 34–55.
    [Google Scholar]
  5. Blum, M.D. & Aslan, A. (2006) Signatures of climate Vs. sea‐level change within incised valley‐fill successions; Quaternary examples from the Texas Gulf Coast. Sed. Geol., 190, 177–211.
    [Google Scholar]
  6. Bookhagen, B., Thiede, R.C. & Strecker, M.R. (2005) Late quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology, 33, 149–152.
    [Google Scholar]
  7. Bourget, J., Zaragosi, S., Ellouz‐Zimmermann, N., Ducassou, E., Prins, M.A., Garlan, T., Lanfumey, V., Rouillard, P. & Schneider, J.‐L. (2010) Highstand vs. lowstand turbidite system growth in the Makran active margin: imprints of high‐frequency external controls on sediment delivery mechanisms to deep water systems. Mar. Geol., 274, 187–208.
    [Google Scholar]
  8. Bourget, J., Zaragosi, S., Rodriguez, M., Fournier, M., Garlan, T. & Chamot‐Rooke, N. (2013) Late Quaternary megaturbidites of the Indus Fan: origin and stratigraphic significance. Mar. Geol., 336, 10–23.
    [Google Scholar]
  9. Burgess, P.M. & Hovius, N. (1998) Rates of delta progradation during highstands; consequences for timing of deposition in deep‐marine systems. J. Geol. Soc., 155, 217–222.
    [Google Scholar]
  10. Cacchione, D.A., Wiberg, P.L., Lynch, J., Irish, J. & Traykovski, P. (1999) Estimates of suspended‐sediment flux and bedform activity on the inner portion of the Eel continental shelf. Mar. Geol., 154, 83–97.
    [Google Scholar]
  11. Calvès, G., Toucanne, S., Jouet, G., Charrier, S., Thereau, E., Etoubleau, J., Marsset, T., Droz, L., Bez, M., Abreu, V., Jorry, S., Mulder, T. & Lericolais, G. (2013) Inferring denudation variations from the sediment record; an example of the last glacial cycle record of the Golo Basin and watershed, East Corsica, western Mediterranean sea. Basin Res., 25, 197–218. doi:10.1111/j.1365‐2117.2012.00556.x.
    [Google Scholar]
  12. Camoin, G.F., Montaggioni, L.F. & Braithwaite, C.J.R. (2004) Late glacial to post glacial sea levels in the Western Indian Ocean. Mar. Geol., 206, 119–146. doi:10.1016/j.margeo.2004.02.003.
    [Google Scholar]
  13. Clift, P.D. (2006) Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett., 241, 571–580.
    [Google Scholar]
  14. Clift, P.D. & Blusztajn, J.S. (2005) Reorganization of the western Himalayan river system after five million years ago. Nature, 438, 1001–1003.
    [Google Scholar]
  15. Clift, P. & Gaedicke, C. (2002) Accelerated mass flux to the Arabian Sea during the middle to late Miocene. Geology, 30, 207–210.
    [Google Scholar]
  16. Clift, P.D. & Giosan, L. (2013) Sediment fluxes and buffering in the Post‐Glacial Indus Basin. Basin Res., in press.
    [Google Scholar]
  17. Clift, P.D. & Plumb, R.A. (2008) The Asian Monsoon: Causes, History and Effects. Cambridge University Press, Cambridge.
    [Google Scholar]
  18. Clift, P.D., MacLeod, C.J., Tappin, D.R., Wright, D. & Bloomer, S.H. (1998) Tectonic controls on sedimentation in the Tonga Trench and forearc, SW Pacific. Geol. Soc. Am. Bull., 110, 483–496.
    [Google Scholar]
  19. Clift, P.D., Shimizu, N., Layne, G., Gaedicke, C., Schlüter, H.U., Clark, M. & Amjad, S. (2001) Development of the Indus Fan and its significance for the erosional history of the Western Himalaya and Karakoram. Geol. Soc. Am. Bull., 113, 1039–1051.
    [Google Scholar]
  20. Clift, P.D., Lee, J.I., Hildebrand, P., Shimizu, N., Layne, G.D., Blusztajn, J., Blum, J.D., Garzanti, E. & Khan, A.A. (2002) Nd and Pb isotope variability in the Indus River System; implications for sediment provenance and crustal heterogeneity in the Western Himalaya. Earth Planet. Sci. Lett., 200, 91–106. doi:10.1016/S0012‐821X(02)00620‐9.
    [Google Scholar]
  21. Clift, P.D., Giosan, L., Blusztajn, J., Campbell, I.H., Allen, C.M., Pringle, M., Tabrez, A., Danish, M., Rabbani, M.M., Carter, A. & Lückge, A. (2008) Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology, 36, 79–82. doi:10.1130/G24315A.1.
    [Google Scholar]
  22. Covault, J.A., Craddock, W.H., Romans, B.W., Fildani, A. & Gosai, M. (2013) Spatial and temporal variations in landscape evolution; historic and longer‐term sediment flux through global catchments. J. Geol., 121, 35–56.
    [Google Scholar]
  23. Daley, T. & Alam, Z. (2002) Seismic stratigraphy of the offshore Indus Basin. In: The Tectonic and Climatic Evolution of the Arabian Sea (Ed. by P. D.Clift , D.Kroon , C.Gaedicke & J.Craig ) Geol. Soc. London Spec. Publ., 195, 259–271.
    [Google Scholar]
  24. DePaolo, D.J. & Wasserburg, G.J. (1976) Nd isotopic variations and petrogenetic models. Geophys. Res. Lett., 3, 249–252.
    [Google Scholar]
  25. Dortch, J.M., Dietsch, C., Owen, L.A., Caffee, M.W. & Ruppert, K. (2011) Episodic fluvial incision of rivers and rock uplift in the Himalaya and Transhimalaya. J. Geol. Soc., 168, 783–804.
    [Google Scholar]
  26. Enzel, Y., Ely, L.L., Mishra, S., Ramesh, R., Amit, R., Lazar, B., Rajaguru, S.N., Baker, V.R. & Sandle, A. (1999) High‐resolution holocene environmental changes in the Thar Desert, northwestern India. Science, 284, 125–128.
    [Google Scholar]
  27. Ferry, J., Babonneau, N., Mulder, T., Parize, O. & Raillard, S. (2004) Morphogenesis of congo submarine canyon and valley: implications about the theories of the canyons formation. Geodin. Acta, 17, 241–251. doi:10.3166/ga.17.241‐251.
    [Google Scholar]
  28. Fildani, A., Normark, W.R., Kostic, S. & Parker, G. (2006) Channel formation by flow stripping: large‐scale scour features along the Monterey East Channel and their relation to sediment waves. Sedimentology, 53, 1265–1287. doi:10.1111/j.1365‐3091.2006.00812.x.
    [Google Scholar]
  29. Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A. & Matter, A. (2003) Holocene Forcing of the Indian Monsoon Recorded in a Stalagmite from Southern Oman. Science, 300, 1737–1739.
    [Google Scholar]
  30. Giosan, L., Flood, R.D., Grützner, J., Franz, S.‐O., Poli, M.‐S. & Hagen, S. (2001) High‐resolution carbonate content estimated from diffuse spectral reflectance for Leg 172 sites. In: Proceedings of the Ocean Drilling Program, Vol. 172 (Ed. by L. D.Kelgwin , D.Rio , G. D.Acton & E.Arnold ), pp. 1–12. Ocean Drilling Program, Texas A&M University, College Station.
    [Google Scholar]
  31. Giosan, L., Clift, P.D., Blusztajn, J., Tabrez, A., Constantinescu, S. & Filip, F. (2006a) On the control of climate‐ and human‐modulated fluvial sediment delivery on river delta development: the Indus. EOS Trans. Am. Geophys. Union, 87, OS14A‐04.
    [Google Scholar]
  32. Giosan, L., Constantinescu, S., Clift, P.D., Tabrez, A.R., Danish, M. & Inam, A. (2006b) Recent morphodynamics of the Indus delta shore and shelf. Cont. Shelf Res., 26, 1668–1684.
    [Google Scholar]
  33. Giosan, L., Clift, P.D., Macklin, M.G., Fuller, D.Q., Constantinescu, S., Durcan, J.A., Stevens, T., Duller, G.A.T., Tabrez, A., Adhikari, R., Gangal, K., Alizai, A., Filip, F., VanLaningham, S. & Syvitski, J.P.M. (2012) Fluvial landscapes of the Harappan Civilization. Proc. Natl Acad. Sci., 109, 1688–1694. doi:10.1073/pnas.1112743109.
    [Google Scholar]
  34. Goldstein, S.L., O'Nions, R.K. & Hamilton, P.J. (1984) A Sm‐Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet. Sci. Lett., 70, 221–236.
    [Google Scholar]
  35. Goodbred, S.L. & Kuehl, S.A. (2000) Enormous Ganges‐Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology (Boulder), 28, 1083–1086.
    [Google Scholar]
  36. Griggs, G.B. & Hein, J.R. (1980) Sources, dispersal, and clay mineral composition of fine‐grained sediment off central and northern California. J. Geol., 88, 541–566.
    [Google Scholar]
  37. Gupta, A.K., Anderson, D.M. & Overpeck, J.T. (2003) Abrupt changes in the asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 421, 354–356.
    [Google Scholar]
  38. Hinderer, M. (2012) From gullies to mountain belts: a review of sediment budgets at various scales. Sed. Geol., 280, 21–59. doi:10.1016/j.sedgeo.2012.03.009.
    [Google Scholar]
  39. Hughen, K.A., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C., Blackwell, P.G., Buck, C.E., Burr, G., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Kromer, B., McCormac, F.G., Manning, S., Ramsey, C.B., Reimer, P.J., Reimer, R.W., Remmele, S., Southon, J.R., Stuvier, M., Talamo, S., Taylor, F.W., van der Plicht, J. & Weyhenmeyer, C.W. (2009) Marine 04 radiocarbon calibration curves 0‐50,000 years cal BP. Radiocarbon, 46, 1059–1086.
    [Google Scholar]
  40. Imran, J., Parker, G. & Katopodes, N. (1998) A numerical model of channel inception on submarine fans. J. Geophys. Res., 103, 1219–1238. doi: 10.1029/97JC01721.
    [Google Scholar]
  41. Inam, A., Clift, P.D., Giosan, L., Tabrez, A.R., Tahir, M., Rabbani, M.M. & Danish, M. (2007) The Geographic, Geological and Oceanographic setting of the Indus River. In: Large Rivers: Geomorphology and Management (Ed. by A.Gupta ), pp. 333–345. John Wiley and Sons, Chichester.
    [Google Scholar]
  42. Inman, D.L., Nordstrom, C.E. & Flick, R.E. (1976) Currents in submarine canyons: an air‐sea‐land interaction. Annu. Rev. Fluid Mech., 8, 275–310. doi:10.1146/annurev.fl.08.010176.001423.
    [Google Scholar]
  43. Joint Typhoon Warning Center
    Joint Typhoon Warning Center . (2002) The Joint Typhoon Warning Center Tropical Cyclone Best‐Tracks, 1945‐2000. Available from http://www.usno.navy.mil/JTWC/.
  44. Kazmi, A.H. (1984) Geology of the Indus Delta. In: Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan (Ed. by BUHaq , JDMilliman ), pp. 65–70. Van Nostrand Reinhold, New York.
    [Google Scholar]
  45. Kench, P.S., Smithers, S.G., McLean, R.F. & Nichol, S.L. (2009) Holocene reef growth in the maldives: evidence of a mid‐Holocene sealevel high‐stand in the central Indian Ocean. Geology, 37, 455–458. doi:10.1130/G25590A.
    [Google Scholar]
  46. Kineke, G.C., Sternberg, R.W., Trowbridge, J.H. & Geyer, W.R. (1996) Fluid mud processes on the Amazon continental shelf. Cont. Shelf Res., 16, 667–696.
    [Google Scholar]
  47. Klaus, A. & Taylor, B. (1991) Submarine canyon development in the Izu‐Bonin Forearc; a SeaMARC II and seismic survey of Aoga Shima Canyon. Mar. Geophys. Res., 13, 131–152.
    [Google Scholar]
  48. Kudrass, H.R., Michels, K.H., Wiedicke, M. & Suckow, A. (1998) Cyclones and tides as feeders of a submarine canyon off Bangladesh. Geology, 26, 715–718.
    [Google Scholar]
  49. Kumar, K.K., Rajagopalan, B. & Cane, M.A. (1999) On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 2156–2159. doi:10.1126/science.284.5423.2156.
    [Google Scholar]
  50. Limmer, D.R., Boening, P., Giosan, L., Ponton, C., Köhler, C.M., Cooper, M.J., Tabrez, A.R. & Clift, P.D. (2012a) Geochemical record of Holocene to Recent sedimentation on the Western Indus continental shelf, Arabian Sea. Geochem. Geophys. Geosyst., 13, Q01008. doi:10.1029/2011GC003845.
    [Google Scholar]
  51. Limmer, D.R., Henstock, T.J., Giosan, L., Ponton, C., Tabrez, A.R., Macdonald, D.I.M. & Clift, P.D. (2012b) Impacts of sediment supply and local tectonics on clinoform distribution: the seismic stratigraphy of the mid Pleistocene‐Holocene Indus Shelf. Mar. Geophys. Res., 33, 251–267. doi:10.1007/s11001‐012‐9160‐6.
    [Google Scholar]
  52. Liu, L., Chen, J., J. Ji, Y.C. & Balsam, W. (2006) Variation of Zr/Rb ratios in the Chinese loess deposits during the past 1.8 Myr and its implication for the change of East Asian monsoon intensity. Geochem. Geophys. Geosyst., 7, Q10006. doi:10.1029/2005GC001188.
    [Google Scholar]
  53. Lückge, A., Deplazes, G., Schulz, H., Scheeder, G., Suckow, A., Kasten, S. & Haug, G.H. (2012) Impact of indus river discharge on productivity and preservation of organic carbon in the Arabian Sea over the twentieth century. Geology, doi:10.1130/G32608.1.
    [Google Scholar]
  54. McHugh, C.M.G. & Olson, H.C. (2002) Pleistocene chronology of continental margin sedimentation: new insights into traditional models, New Jersey. Mar. Geol., 186, 389–411.
    [Google Scholar]
  55. McNichol, A.P., Gagnon, A.R., Osborne, E.A., Hutton, D.L., VonReden, K.F. & Schneider, R.J. (1995) Improvements in procedural blanks at Nosams: reflections of improvements in sample preparation and accelerator operation. Radiocarbon, 37, 683–691.
    [Google Scholar]
  56. Métivier, F. & Gaudemer, Y. (1999) Stability of output fluxes of large rivers in South and East Asia during the last 2 million years; implications of floodplain processes. Basin Res., 11, 293–303.
    [Google Scholar]
  57. Michels, K.H., Kudrass, H.R., Hübscher, C., Suckow, A. & Wiedicke, M. (1998) The submarine delta of the Ganges‐Brahmaputra: cyclone‐dominated sedimentation patterns. Mar. Geol., 149, 133–154.
    [Google Scholar]
  58. Milliman, J.D. & Syvitski, J.P.M. (1992) Geomorphic/tectonic control of sediment discharge to the ocean; the importance of small mountainous rivers. J. Geol., 100, 525–544.
    [Google Scholar]
  59. Milliman, J.D., Quraishee, G.S. & Beg, M.A.A. (1982) Sediment discharge from the Indus River to the ocean: past, present and future. In: Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan (Ed. by BUHaq , JDMilliman ), pp. 65–70. Van Nostrand Reinhold, New York.
    [Google Scholar]
  60. Mitchell, N.C. (2004) Form of submarine erosion from confluences in Atlantic USA continental slope Canyons. Am. J. Sci., 304, 590–611. doi:10.2475/ajs.304.7.590.
    [Google Scholar]
  61. Nittrouer, C.A. (1999) Strataform: overview of its design and synthesis of its results. Mar. Geol., 154, 3–12.
    [Google Scholar]
  62. Ogston, A.S. & Sternberg, R.W. (1999) Sediment transport events on the northern California Shelf. Mar. Geol., 154, 69–82.
    [Google Scholar]
  63. Palamenghi, L., Schwenk, T., Spiess, V. & Kudrass, H.R. (2011) Seismostratigraphic analysis with centennial to decadal time resolution of the sediment sink in the Ganges–Brahmaputra subaqueous delta. Cont. Shelf Res., 31, 712–730.
    [Google Scholar]
  64. Parker, G. (1982) Conditions for the ignition of catastrophically erosive turbidity currents. Mar. Geol., 46, 307–327.
    [Google Scholar]
  65. Pinson, L.J.W. (2010) Remote Classification of Sediment Properties Using High‐Resolution Marine Seismic Data. PhD Thesis, University of Southampton, UK.
  66. Pirmez, C., Prather, B.E., Mallarino, G., O'Hayer, W.W., Droxler, A.W. & Winker, C.D. (2012) Chronostratigraphy of the Brazos–Trinity depositional System, Western Gulf of Mexico: implications for deepwater depositional models. In: Application of the Principles of Seismic Geomorphology to Continental‐Slope and Base‐of‐Slope Systems (Ed. by B. E.Prather , M. E.Deptuck , D.Mohrig , B. V.Hoorn & R. B.Wynn ) SEPM Spec. Publ., 99, 111–143.
    [Google Scholar]
  67. Pourmand, A., Marcantonio, F., Bianchi, T.S., Canuel, E.A. & Waterson, E.J. (2007) A 28‐ka history of sea surface temperature, primary productivity and planktonic community variability in the western Arabian Sea. Paleoceanography, 22, PA4208. doi: 10.1029/2007PA001502.
    [Google Scholar]
  68. Pratson, L.F. & Coakley, B.J. (1996) A model for the headward erosion of submarine canyons induced by downslope‐eroding sediment flows. Geol. Soc. Am. Bull., 108, 225–234.
    [Google Scholar]
  69. Prins, M.A. & Postma, G. (2000) Effects of climate, sea level, and tectonics unraveled for last deglaciation turbidite records of the Arabian Sea. Geology, 28, 375–378.
    [Google Scholar]
  70. Prins, M.A., Postma, G., Cleveringa, J., Cramp, A. & Kenyon, N.H. (2000) Controls on terrigenous sediment supply to the Arabian Sea during the Late Quaternary: the Indus Fan. Mar. Geol., 169, 327–349. doi:10.1016/S0025‐3227(00)00086‐4.
    [Google Scholar]
  71. Puig, P., Ogston, A.S., Mullenbach, B.L., Nittrouer, C.A., Parsons, J.D. & Sternberg, R.W. (2004) Storm‐induced sediment gravity flows at the head of the Eel submarine canyon, northern California margin. J. Geophys. Res., 109, C03019. doi:10.1029/2003JC001918.
    [Google Scholar]
  72. von Rad, U. & Tahir, M. (1997) Late Quaternary sedimentation on the outer indus shelf and slope (Pakistan); evidence from high‐resolution seismic data and coring. Mar. Geol., 138, 193–236.
    [Google Scholar]
  73. von Rad, U., Delisle, G. & Lückge, A. (2002) On the formation of laminated sediments on the continental margin Off Pakistan. Mar. Geol., 192, 425–429. doi:10.1016/S0025‐3227(02)00544‐3.
    [Google Scholar]
  74. Shen, Z., Törnqvist, T.E., Autin, W.J., Mateo, Z.R.P., Straub, K.M. & Mauz, B. (2012) Rapid and widespread response of the Lower Mississippi River to eustatic forcing during the last glacial‐interglacial cycle. Geol. Soc. Am. Bull., 124, 690–704.
    [Google Scholar]
  75. Shepard, F.P. (1976) Tidal components of currents in submarine canyons. J. Geol., 84, 343–350.
    [Google Scholar]
  76. Shepard, F.P. (1981) Submarine canyons: multiple causes and long‐time persistence. Am. Assoc. Petrol. Geol. Bull., 65, 1062–1077.
    [Google Scholar]
  77. Siddall, M., Rohling, E.J., Thompson, W.G. & Waelbroeck, C. (2008) Marine isotope stage 3 sea level fluctuations: data synthesis and new outlook. Rev. Geophys., 46, RG4003. doi: 10.1029/2007RG000226.
    [Google Scholar]
  78. Singh, M., Sharma, M. & Tobschall, H.J. (2005) Weathering of the Ganga alluvial Plain, northern india: implications from fluvial geochemistry of the Gomati River. Appl. Geochem., 20, 1–21.
    [Google Scholar]
  79. Sirocko, F., Sarnthein, M., Erlenkeuser, H., Lange, H., Arnold, M. & Duplessey, J.C. (1993) Century‐scale events in monsoonal climate over the last 24,000 years. Nature, 364, 322–324.
    [Google Scholar]
  80. Sømme, T.O., Helland‐Hansen, W., Martinsen, O.J. & Thurmond, J.B. (2009) Relationships between morphological and sedimentological parameters in source‐to‐sink systems: a basis for predicting semi‐quantitative characteristics in subsurface systems. Basin Res., 21, 361–387.
    [Google Scholar]
  81. Staubwasser, M., Sirocko, F., Grootes, P.M. & Erlenkeuser, H. (2002) South Asian monsoon climate change and radiocarbon in the Arabian Sea during early and middle Holocene. Paleoceanography, 17, 4. doi:10.1029/2000PA000608.
    [Google Scholar]
  82. Sternberg, R.W., Cacchione, D.A., Paulson, B., Kineke, G.C. & Drake, D.E. (1996) Observations of sediment transport on the Amazon sub‐ aqueous delta. Cont. Shelf Res., 16, 697–715.
    [Google Scholar]
  83. Subrahmanyam, V., Krishna, K.S., Ramana, M.V. & Murthy, K.S.R. (2008) Marine geophysical investigations across the submarine canyon (Swatch‐of‐No‐Ground), northern Bay of Bengal. Curr. Sci., 94, 507–513.
    [Google Scholar]
  84. Thiry, M. (2000) Palaeoclimatic interpretation of clay minerals in marine deposits; an outlook from the continental origin. Earth Sci. Rev., 49, 201–221.
    [Google Scholar]
  85. Vail, P.R., Mitchum, R.M., Todd, R.G., Widmier, J.M., Thompson, S.I., Sangree, J.B., Bubb, J.N. & Hatlelid, W.G. (1977) Seismic stratigraphy and global changes of sea‐level. In: Seismic Stratigraphy–Applications to Hydrocarbon Exploration (Ed. by C. E.Payton ) Am. Assoc. Petrol. Geol. Mem., 26, 49–212.
    [Google Scholar]
  86. Walsh, J.P. & Nittrouer, C.A. (2009) Understanding fine‐grained river‐sediment dispersal on continental margins. Mar. Geol., 263, 34–45. doi:10.1016/j.margeo.2009.03.016.
    [Google Scholar]
  87. Weber, M.E., Wiedicke, M.H., Kudrass, H.R., Hübsche, C. & Erlenkeuse, H. (1997) Active growth of the Bengal Fan during sea‐level rise and highstand. Geology, 25, 315–318.
    [Google Scholar]
  88. Wells, J.T. & Coleman, J.M. (1984) Delta morphology and sedimentology with special reference to the Indus River Delta. In: Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan (Ed. by B. U.Haq & J. D.Milliman ), pp. 85–100. Von Nostrand and Reinhold Company, New York.
    [Google Scholar]
  89. West, A.J., Galy, A. & Bickle, M.J. (2005) Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett., 235, 211–228. doi:10.1016/j.epsl.2005.03.020.
    [Google Scholar]
  90. Wünnemann, B., Demske, D., Tarasov, P., Kotlia, B.S., Reinhardt, C., Bloemendal, J., Diekmann, B., Hartmann, K., Krois, J., Riedel, F. & Arya, N. (2010) Hydrological evolution during the last 15 Kyr in the Tso Kar Lake Basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quatern. Sci. Rev., 29, 1138–1155.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12041
Loading
/content/journals/10.1111/bre.12041
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error