1887
Volume 26 Number 1
  • E-ISSN: 1365-2117

Abstract

Abstract

Due to the effects of sediment compaction, thermal subsidence and ‘post‐rift’ fault reactivation, the present‐day geometry of buried, ancient rift basins may not accurately reflect the geometry of the basin at any stage of its syn‐rift evolution. An understanding of the geometry of a rift basin through time is crucial for resolving the dynamics of continental rifting and in assessing the hydrocarbon prospectivity of such basins. In this study, we have restored the Late Jurassic–Early Cretaceous geometry of the southern Halten Terrace, offshore mid Norway, using a combination of well log‐ and core‐derived, sedimentological and stratigraphic data, seismic‐stratigraphic observations and reverse subsidence modelling. This integrated geological and geophysical approach has allowed the large number of input parameters involved in flexural backstripping and post‐rift thermal subsidence modelling to be constrained. We have thus been able to determine the regional structure of the basin at the end of the Late Jurassic–Early Cretaceous rift phase and the associated amount of crustal stretching. Our basin geometry reconstructions reveal that, during the latest syn‐rift period in the Late Jurassic–Early Cretaceous, the Halten Terrace was characterized by a series of isolated depocentres, located between footwall islands, which were not connected into a single depocentre until the Late Cretaceous (Coniacian). We show that two major unconformities, which are now vertically offset by . 2 km and located . 60 km apart, formed at similar subaerial elevations in the Late Jurassic–Early Cretaceous and were subsequently vertically offset by thermally induced tilting of the basin margin. Cretaceous sediments were deposited in a single, relatively unconfined basin in water depths of 1–1.5 km. The β profile that best restores palaeobathymetry to match our geological constraints is the same as that derived from summing visible post‐Late Triassic heave on faults plus 25–60% additional extension to account for sub‐seismic deformation. This indicates that, at least in the southern part of the Halten Terrace, the amount of upper‐crustal stretching during the Late Jurassic–Early Cretaceous rift phase is comparable to the total amount of lithospheric stretching, supporting a uniform pure‐shear stretching model.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12049
2014-01-17
2024-04-16
Loading full text...

Full text loading...

References

  1. van der Beek, P. (1997) Flank uplift and topography at the Central Baikal Rift (SE Siberia): a test of kinematic models for continental extension. Tectonics, 16, 122–136.
    [Google Scholar]
  2. van der Beek, P., Cloetingh, S. & Andriessen, P. (1994) Mechanisms of extensional basin formation and vertical motions at rift flanks: constraints from tectonic modelling and fission‐track thermochronology. Earth Planet. Sci. Lett., 121, 417–433.
    [Google Scholar]
  3. Bell, R.E., McNeill, L.C., Bull, J.M. & Henstock, T.J. (2008) Evolution of the offshore western Gulf of Corinth. Geol. Soc. Am. Bull., 120, 156–178.
    [Google Scholar]
  4. Bell, R.E., McNeill, L.C., Henstock, T.J. & Bull, J.M. (2011) Comparing extension on multiple time and depth scales in the Corinth Rift, Central Greece. Geophys. J. Int., 186, 463–470.
    [Google Scholar]
  5. Bertotti, G., ter Voorde, M., Cloetingh, S. & Picotti, V. (1997) Thermomechanical evolution of the South Alpine rifted margin (North Italy): constraints on the strength of passive continental margins. Earth Planet. Sci. Lett., 146, 181–193.
    [Google Scholar]
  6. Blystad, P., Brekke, H., Færseth, R.B., Larsen, B.T., Skogseid, J. & Torudbakken, B. (1995) Structural elements of the Norwegian Continental Shelf, Part II: The Norwegian Sea region. Norw. Petrol. Direct. Bull., 8, 1–100.
    [Google Scholar]
  7. Breivik, A.J., Mjelde, R., Raum, T., Faleide, J.I., Murai, Y. & Flueh, E.R. (2011) Crustal Structure beneath the Trøndelag Platform and adjacent areas of the mid–Norwegian Margin, as derived from wide‐angle seismic and potential field data. Norw. J. Geol., 90, 141–161.
    [Google Scholar]
  8. Ceramicola, S., Stoker, M., Praeg, D., Shannon, P.M., De Santis, L., Hoult, R., Hjelstuen, B.O., Laberg, S. & Mathiesen, A. (2005) Anomalous Cenozoic subsidence along the ‘passive’ continental margin from Ireland to mid‐norway. Mar. Petrol. Geol., 22, 1045–1067.
    [Google Scholar]
  9. Clift, P. & Lin, J. (2001) Preferential mantle lithospheric extension under the South China margin. Mar. Petrol. Geol., 18, 929–945.
    [Google Scholar]
  10. Close, D.I., Watts, A.B. & Stagg, H.M.J. (2009) A marine geophysical study of the Wilkes Land rifted continental margin, Antarctica. Geophys. J. Int., 177, 430–450.
    [Google Scholar]
  11. Corfield, S. & Sharp, I.R. (2000) Structural style and stratigraphic architecture of fault propagation fording in extensional settings: a seismic example from the Smørbukk area, Halten Terrace, Mid‐Norway. Basin Res., 12, 329–341.
    [Google Scholar]
  12. Dalland, A., Worsley, D. & Ofstad, K. (1988) A Lithostratigraphic Scheme for the Mesozoic and Cenozoic Succession Offshore Mid‐ and Northern Norway. NPD, Bulletin No. 4.
  13. Doré, A.G. (1991) The structural foundation and evolution of mesozoic seaways between Europe and the Arctic. Palaeogeogr. Palaeoclimatol. Palaeoecol., 87, 441–492.
    [Google Scholar]
  14. Doré, A.G., Lundin, E.R., Fichler, C. & Olesen, O. (1997) Patterns of basement structure and reactivation along the NE Atlantic margin. J. Geol. Soc., 154, 85–92.
    [Google Scholar]
  15. Doré, A.G., Lundin, E.R., Kusznir, N.J. & Pascal, C. (2008) Potential mechanisms for the genesis of Cenozoic domal structures on the NE Atlantic margin: pros, cons and some new ideas. In: The Nature and Origin of Compression in Passive Margins (Ed. by H.Johnson , A.G.Doré , R.W.Gatliff , R.Holdsworth , E.Lundin & J.D.Ritchie ) Geol. Soc. London Spec. Publ., 306, 1–26.
    [Google Scholar]
  16. Elliott, G.M., Wilson, P., Jackson, C.A.L., Gawthorpe, R.L., Michelsen, L. & Sharp, I.R. (2012) The linkage between fault throw and footwall scarp erosion patterns: an example from the Bremstein Fault Complex, offshore Mid‐Norway. Basin Res., 24, 180–197.
    [Google Scholar]
  17. England, P. (1983) Constraints on extension of continental lithosphere. J. Geophys. Res. Solid Earth, 88, 1145–1152.
    [Google Scholar]
  18. Færseth, R.B. & Lien, T. (2002) Cretaceous evolution in the Norwegian Sea—a period characterized by tectonic quiescence. Mar. Petrol. Geol., 19, 1005–1027.
    [Google Scholar]
  19. Faleide, J. I., Bjørlykke, K. & Gabrielsen, R. H. (2010) Geology of the Norwegian continental shelf. In: Petroleum Geoscience: From Sedimentary Environments to Rock Physics (Ed. by K.Bjørlykke ), pp. 467–499. Springer Verlag, Berlin.
    [Google Scholar]
  20. Ferraccioli, F., Finn, C.A., Jordan, T.A., Bell, R.E., Anderson, L.M. & Damaske, D. (2011) East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature, 479, 388–392.
    [Google Scholar]
  21. Gradstein, F. & Backstrom, S. (1996) Cainozoic biostratigraphy and palaeobathymetry, northern North Sea and Haltenbanken. Nor. Geol. Tidsskr., 76, 3–32.
    [Google Scholar]
  22. Haq, B.U., Hardenbol, J. & Vail, P.R. (1987) Chronology of fluctuating sea levels since the triassic. Science, 235, 1156–1167.
    [Google Scholar]
  23. Karner, G.D. & Watts, A.B. (1983) Gravity anomalies and flexure of the lithosphere at mountain ranges. J. Geophys. Res., 10, 10449–10477.
    [Google Scholar]
  24. Karner, G.D., Steckler, M.S. & Thorne, J.A. (1983) Long‐term mechanical properties of the continental lithosphere. Nature, 304, 250–253.
    [Google Scholar]
  25. Kjennerud, T. & Vergara, L. (2005) Cretaceous to Palaeogene 3D palaeobathymetry and sedimentation in the Vøring Basin, Norwegian Sea. Geol. Soc. London Petrol. Geol. Conf. Ser., 6, 815–831.
    [Google Scholar]
  26. Kusznir, N.J., Roberts, A.M. & Morley, C.K. (1995) Forward and reverse modelling of rift basin formation. Geol. Soc. London Spec. Publ., 80, 33–56.
    [Google Scholar]
  27. Kusznir, N.J., Hunsdale, R. & Roberts, A.M. (2004) Timing of depth‐dependent lithosphere stretching on the S.Lofoten riftedmargin offshoremid‐norway: pre‐breakup or post‐breakup?Basin Res., 16, 279–296.
    [Google Scholar]
  28. Kusznir, N.J., Hunsdale, R., Roberts, A.M. & Team, I. (2005) Norwegian margin depth‐dependent strethcing. In: Petroleum Geology: North‐West Europe and Global Perspectives, Proceedings of the 6th Petroleum Geology Conference (Ed. by A.G.Doré & B.A.Vining ), pp. 767–783. Geological Society, London.
    [Google Scholar]
  29. Lamarche, G., Barnes, P. M. & Bull, J. M. (2006) Faulting and extension rate over the last 20,000 years in the offshore Whakatane Graben, New Zealand continental shelf. Tectonics, 25, TC4005.
    [Google Scholar]
  30. Manatschal, G. & Bernoulli, D. (1999) Architecture and tectonic evolution of nonvolcanic margins: present‐day Galicia and ancient Adria. Tectonics, 18, 1099–1119.
    [Google Scholar]
  31. Marsh, N., Imber, J., Holdsworth, R. E., Brockbank, P. & Ringrose, P. (2010) The structural evolution of the Halten Terrace, offshore Mid‐Norway: extensional fault growth and strain localisation in a multi‐layer brittle‐ductile system. Basin Research, 22, 195–214.
    [Google Scholar]
  32. Marrett, R. & Allmendinger, R.W. (1992) Amount of extension on “small” faults: an example from the viking graben. Geology, 20, 47–50.
    [Google Scholar]
  33. McKenzie, D. (1978) Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett., 40, 25–32.
    [Google Scholar]
  34. McKenzie, D. (2003) Estimating T E in the presence of internal loads. J. Geophys. Res., 108, 2438.
    [Google Scholar]
  35. Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie‐Blick, N. & Pekar, S.F. (2005) The phanerozoic record of global sea‐level change. Science, 310, 1293–1298.
    [Google Scholar]
  36. Müller, R.D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C. (2008) Long‐term sea‐level fluctuations driven by ocean basin dynamics. Science, 319, 1357–1362.
    [Google Scholar]
  37. Nadin, P.A. & Kusznir, N.J. (1995) Palaeocene uplift and eocene subsidence in the northern North Sea Basin from 2D forward and reverse stratigraphic modelling. J. Geol. Soc., 152, 833–848.
    [Google Scholar]
  38. Pascoe, R., Hooper, R., Storhaug, K. & Harper, H. (1999, January). Evolution of extensional styles at the southern termination of the Nordland Ridge, Mid‐Norway: a response to variations in coupling above Triassic salt. In: Geological Society, London, Petroleum Geology Conference Series Vol. 5, pp. 83–90. Geological Society of London.
    [Google Scholar]
  39. Pérez‐Gussinyé, M., Lowry, A.R., Watts, A.B. & Velicogna, I. (2004) On the recovery of effective elastic thickness using spectral methods: examples from synthetic data and from the fennoscandian shield. J. Geophys. Res., 109, B10409.
    [Google Scholar]
  40. Pérez‐Gussinyé, M., Metois, M., Fernández, M., Vergés, J., Fullea, J. & Lowry, A. (2009) Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics. Earth Planet. Sci. Lett., 287, 152–167.
    [Google Scholar]
  41. Provan, D. (1992) Draugen oil field, Haltenbanken Province, Offshore Norway. In: Giant Oil and Gas Fields of the Last Decade 1978‐1988 (Ed. by M.T.Halbouty ) AAPG Spec. Vol., 54, 371–382.
    [Google Scholar]
  42. Ranero, C.R. & Perez‐Gussinye, M. (2010) Sequential faulting explains the asymmetry and extension discrepancy of conjugate margins. Nature, 468, 294–299.
    [Google Scholar]
  43. Reemst, P. & Cloetingh, S. (2000) Polyphase rift evolution of the Vøring margin (mid‐Norway): constraints from forward tectonostratigraphic modeling. Tectonics, 19, 225–240.
    [Google Scholar]
  44. Reston, T.J. (2009) The structure, evolution and symmetry of the magma‐poor rifted margins of the North and Central Atlantic: a synthesis. Tectonophysics, 468, 6–27.
    [Google Scholar]
  45. Reynisson, R.F., Ebbing, J., Lundin, E.R. & Osmundsen, P.T. (2010) Properties and distribution of lower crustal bodies on the mid‐Norwegian margin. In: Petroleum Geology: From Mature Basins to New Frontiers (Ed. by B.A.Vining & S.C.Pickering ), pp. 843–854. Geological Society, London.
    [Google Scholar]
  46. Richardson, N.J., Underhill, J.R. & Lewis, G. (2005) The role of evaporite mobility in modifying subsidence patterns during normal fault growth and linkage, Halten Terrace, mid‐Norway. Basin Res., 17, 203–223.
    [Google Scholar]
  47. Roberts, A.M., Yielding, G., Kusznir, N.J., Walker, I. & Dorn‐Lopez, D. (1993) Mesozoic extension in the North Sea: constraints from flexural backstripping, forward modelling and fault populations. Geol. Soc. London Petrol. Geol. Conf. Ser., 4, 1123–1136.
    [Google Scholar]
  48. Roberts, A.M., Lundin, E.R. & Kusznir, N.J. (1997) Subsidence of the Vøring Basin and the influence of the Atlantic continental margin. J. Geol. Soc., 154, 551–557.
    [Google Scholar]
  49. Roberts, A.M., Kusznir, N.J., Yielding, G. & Styles, P. (1998) 2D flexural backstripping of extensional basins: the need for a sideways glance. Petrol. Geosci., 4, 327–338.
    [Google Scholar]
  50. Roberts, A.M., Corfield, R.I., Kusznir, N.J., Matthews, S.J., Hansen, E.‐K. & Hooper, R.J. (2009) Mapping palaeostructure and palaeobathymetry along the Norwegian Atlantic continental margin: Møre and Vøring Basins. Petrol. Geosci., 15, 27–43.
    [Google Scholar]
  51. Sacek, V. & Ussami, N. (2009) Reappraisal of the effective elastic thickness for the sub‐Andes using 3‐D finite element flexural modelling, gravity and geological constraints. Geophys. J. Int., 179, 778–786.
    [Google Scholar]
  52. Scheck‐Wenderoth, M., Raum, T., Faleide, J.I., Mjelde, R. & Horsfield, B. (2007) The transition from the continent to the ocean: a deeper view on the Norwegian margin. J. Geol. Soc., 164, 855–868.
    [Google Scholar]
  53. Sclater, J.G. & Christie, P.A.F. (1980) Continental stretching: an explanation of the Post‐Mid‐Cretaceous subsidence of the central North Sea Basin. J. Geophys. Res., 85, 3711–3739.
    [Google Scholar]
  54. Shillington, D.J., White, N.J., Minshull, T.A., Edwards, G.R.H., Jones, S.M., Edwards, R.A. & Scott, C.L. (2008) Cenozoic evolution of the eastern Black Sea: a test of depth‐dependent stretching models. Earth Planet. Sci. Lett., 265, 360–378.
    [Google Scholar]
  55. Stewart, J. & Watts, A.B. (1997) Gravity anomalies and spatial variations of flexural rigidity at mountain ranges. J. Geophys. Res., 102, 5327–5352.
    [Google Scholar]
  56. Vail, P., Mitchum, R. & Thompson, S. (1977) Seismic stratigraphy and global changes of sea level, part 3: relative changes of sea level from coastal onlap. In: Seismic Stratigraphy – Applications to Hydrocarbon Exploration (Ed. by C.E.Clayton ), AAPG Mem.26, 63–81.
    [Google Scholar]
  57. Van Hinte, J.E. (1978) Geohistory analysis; application of micropaleontology in exploration geology. AAPG Bull., 62, 201–222.
    [Google Scholar]
  58. Watts, A.B. (1992) The effective elastic thickness of the lithosphere and the evolution of foreland basins. Basin Res., 4, 169–178.
    [Google Scholar]
  59. Watts, A.B. (2001) Isostasy and Flexure of the Lithosphere. Cambridge University Press, Cambridge.
    [Google Scholar]
  60. Watts, A.B. & Fairhead, J.D. (1999) A process‐orientated approach to modeling the gravity signature of continental margins. Lead. Edge, 18, 258–263.
    [Google Scholar]
  61. Watts, A.B., Karner, G.D. & Steckler, M.S. (1982) Lithospheric flexure and the evolution of sedimentary basins. Phil. Trans. Roy. Soc. London, 305, 249–281.
    [Google Scholar]
  62. Whitmarsh, R.B., Manatschal, G. & Minshull, T.A. (2001) Evolution of magma‐poor continental margins from rifting to seafloor spreading. Nature, 413, 150–154.
    [Google Scholar]
  63. van Wijk, J.W. & Cloetingh, S.A.P.L. (2002) Basin migration caused by slow lithospheric extension. Earth Planet. Sci. Lett., 198, 275–288.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12049
Loading
/content/journals/10.1111/bre.12049
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error