1887
Volume 62, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Pre‐stack seismic data are indicative of subsurface elastic properties within the amplitude versus offset characteristic and can be used to detect elastic rock property changes caused by injection. We perform time‐lapse pre‐stack 3‐D seismic data analysis for monitoring sequestration at Cranfield. The time‐lapse amplitude differences of Cranfield datasets are found entangled with time‐shifts. To disentangle these two characters, we apply a local‐correlation‐based warping method to register the time‐lapse pre‐stack datasets, which can effectively separate the time‐shift from the time‐lapse seismic amplitude difference without changing the original amplitudes. We demonstrate the effectiveness of our registration method by evaluating the inverted elastic properties. These inverted time‐lapse elastic properties can be reliably used for monitoring plumes.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12114
2014-04-02
2024-03-29
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.G.1980. Quantitative Seismology: Theory and Methods. W.H.Freeman . A Series of books in geology.
    [Google Scholar]
  2. BulandA. and OmreH.2003. Bayesian linearized AVO inversion. Geophysics68, 185–198.
    [Google Scholar]
  3. BulandA. and OuairY.E.2006. Bayesian time‐lapse inversion. Geophysics71, R43–R48.
    [Google Scholar]
  4. BurkhartT., HooverA.R. and FlemingsP.B.2000. Time‐lapse (4‐D) seismic monitoring of primary production of turbidite reservoirs at South Timbalier Block 295, offshore Louisiana, Gulf of Mexico. Geophysics65, 351–367.
    [Google Scholar]
  5. DruzhininA. and MacBethC.2001. Robust cross‐equalization of 4D‐4C PZ migrated data at Teal South. 71st SEG meeting. San Antoio, USA, SEG Technical Program Expanded Abstracts, 1670–1673.
  6. DuffautK. and LandrøM.2007. Vp/Vs ratio versus differential stress and rock consolidation — A comparison between rock models and time‐lapse AVO data. Geophysics72, C81–C94.
    [Google Scholar]
  7. EllisonS.J., ImhofM.G., oruhC., FuquaA.D. and HenryS.C.2004. Modeling offset‐dependent reflectivity for time‐lapse monitoring of water‐flood production in thin‐layered reservoirs. Geophysics69, 25–36.
    [Google Scholar]
  8. EnglH., HankeM. and NeubauerA.1996. Regularization of inverse problems. Kluwer Academic Publishers.
    [Google Scholar]
  9. FomelS.2007a. Local seismic attributes. Geophysics72, A29–A33.
    [Google Scholar]
  10. FomelS., 2007b. Shaping regularization in geophysical‐estimation problems. Geophysics72, R29–R36.
    [Google Scholar]
  11. FomelS., 2009. Velocity analysis using AB semblance. Geophysical Prospecting57, 311–321.
    [Google Scholar]
  12. FomelS. and JinL.2009. Time‐lapse image registration using the local similarity attribute. Geophysics74, A7–A11.
    [Google Scholar]
  13. GhaderiA. and LandrøM.. 2009. Estimation of thickness and velocity changes of injected carbon dioxide layers from prestack time‐lapse seismic data. Geophysics74, O17–O28.
    [Google Scholar]
  14. HaleD.2006. Fast local cross‐correlations of images. 76th SEG Meeting. New Orleans, SEG Technical Program Expanded Abstracts, 3160–3164.
  15. HaleD., 2009. A method for estimating apparent displacement vectors from time‐lapse seismic images. Geophysics74, V99–V107.
    [Google Scholar]
  16. HallS.A.2006. A methodology for 7D warping and deformation monitoring using time‐lapse seismic data. Geophysics71, O21–O31.
    [Google Scholar]
  17. HallS.A., MacBethC., O. I.Barkved, and P.Wild. 2005. Cross‐matching with interpreted warping of 3D streamer and 3D ocean‐bottom‐cable data at Valhall for time‐lapse assessment. Geophysical Prospecting53, 283–297.
    [Google Scholar]
  18. HampsonD.P., RussellB.H. and BankheadB.2005. Simultaneous inversion of pre‐stack seismic data. 75th SEG meeting. Houston, USA, SEG Technical Program Expanded Abstracts, 1633–1637.
  19. HatchellP. and BourneS.2005. Rocks under strain: Strain‐induced time‐lapse time shifts are observed for depleting reservoirs. The Leading Edge24, 1222–1225.
    [Google Scholar]
  20. HatchellP.J., JorgensenO., GommesenL. and StammeijerJ.2007. Monitoring reservoir compaction from subsidence and time‐lapse time shifts in the dan field. 77th SEG meeting. San Antonio, USA, SEG Technical Program Expanded Abstracts 2007, 2867–2871.
  21. HerschJ.B.1987. Exploration methods‐lower Tuscaloosa trend, Southwest Mississippi. Gulf Coast Association of Geological Societies Transactions37, 105–112.
    [Google Scholar]
  22. HovorkaS.D., MeckelT.A., TrevinoR.H., LuJ., NicotJ.P., ChoiJ.W., FreemanD., CookP., DaleyT.M., Ajo‐FranklinJ.B., FreifeildB.M., DoughtyC., CarriganC.R., BrecqueD.L., KharakaY.K., ThordsenJ.J., PhelpsT.J., YangC., RomanakK.D., ZhangT., HoltR.M., LindlerJ.S. and ButschR.J.2011. Monitoring a large volume co2 injection: Year two results from SECARB project at Denbury LLC Cranfield, Mississippi, USA. Energy Procedia4, 3478–3485 (10th International Conference on Greenhouse Gas Control Technologies).
    [Google Scholar]
  23. IsaacJ.H. and LawtonD.C.2006. A case history of time‐lapse 3D seismic surveys at Cold Lake, Alberta, Canada. Geophysics71, B93–B99.
    [Google Scholar]
  24. KazemeiniS.H., JuhlinC. and FomelS.2010. Monitoring CO2 response on surface seismic data; a rock physics and seismic modeling feasibility study at the CO2 sequestration site, Ketzin, Germany. Journal of Applied Geophysics71, 109–124.
    [Google Scholar]
  25. KlicmanD.P., CameronC.P. and MeylanM.A.1988. Petrology and Depositional Environments of Lower Tuscaloosa Formation (Upper Cretaceous) Sandstones in the North Hustler and Thompson Field Areas, Southwest Mississippi. Gulf Coast Association of Geological Societies Transactions38, 47–58.
    [Google Scholar]
  26. Kvamø. and LandrøM.2005. Pore‐pressure detection sensitivities tested with time‐lapse seismic data. Geophysics70, O39–O50.
    [Google Scholar]
  27. LandrøM.2001. Discrimination between pressure and fluid saturation changes from time‐lapse seismic data. Geophysics66, 836–844.
    [Google Scholar]
  28. LandrøM., SolheimO.A., HildeE., EkrenB.O. and StronenL.K.1999. The Gullfaks 4D seismic study. Petroleum Geoscience5, 213–226.
    [Google Scholar]
  29. LiJ., LinerC., GengP. and ZengJ.2013. Convolutional time‐lapse seismic modeling for sequestration at the Dickman oilfield, Ness County, Kansas. Geophysics78, B147–B158.
    [Google Scholar]
  30. MeckelT. and HovorkaS.2009. A new generation of seismic navigation calibration techniques. Society of Petroleum Engineer, 1–3.
    [Google Scholar]
  31. Mississippi Oil Gas Board
    Mississippi Oil Gas Board . 1966. Cranfield Field, Cranfield unit, Basal Tuscaloosa reservoir, Adams and Franklin Counties, Mississippi. 42–58.
  32. ModersitzkiJ.2004. Numerical methods for image registration. Oxford University Press.
    [Google Scholar]
  33. NickelM., SchlafJ. and SønnelandL.2003. New tools for 4D seismic analysis in compacting reservoirs. Petroleum Geoscience9, 53–59.
    [Google Scholar]
  34. RickettJ.E. and LumleyD.E.2001. Cross‐equalization data processing for time‐lapse seismic reservoir monitoring: A case study from the Gulf of Mexico. Geophysics66, 1015–1025.
    [Google Scholar]
  35. SimmonsJ. and BackusM.M.1996. Waveform‐based avo inversion and avo prediction‐error. Geophysics61, 1575–1588.
    [Google Scholar]
  36. SongX., BaumsteinA. and RouthP.2011. Resolution analysis for full wavefield inversion and its application to time‐lapse. 81th SEG meeting, SEG Technical Program Expanded Abstracts, 2597–2602.
  37. TaoY., SenM.K., ZhangR., and SpikesK.T.2013. A new stochastic inversion workflow for time‐lapse data: hybrid starting model and double‐difference inversion. Journal of Geophysics and Engineering10, 035011.
    [Google Scholar]
  38. ThompsonP.M. and TogaA.W.1997. Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations. Medical Image Analysis1, 271–294.
    [Google Scholar]
  39. TraniM., ArtsR., LeeuwenburghO., and BrouwerJ.2011. Estimation of changes in saturation and pressure from 4D seismic AVO and time‐shift analysis. Geophysics76, C1–C17.
    [Google Scholar]
  40. VedantiN. and SenM.K.2009. Seismic inversion tracks in situ combustion: A case study from balol oil field, india. Geophysics74, B103–B112.
    [Google Scholar]
  41. VeireH.H., BorgosH.G. and LandrøM.2007. Stochastic inversion of pressure and saturation changes from time‐lapse multi component data. Geophysical Prospecting55, 805–818.
    [Google Scholar]
  42. WattsG.F.T., JizbaD., GawithD.E. and GutteridgeP.1996. Reservoir monitoring of the magnus field through 4D time‐lapse seismic analysis. Petroleum Geoscience2, 361–372.
    [Google Scholar]
  43. WolbergG.1994. Digital image warping1st ed.IEEE Computer Society Press.
    [Google Scholar]
  44. ZhangR., GhoshR., SenM.K. and SrinivasanS.2012. Time‐lapse surface seismic inversion with thin bed resolution for monitoring CO2 sequestration: A case study from Cranfield, Mississippi. International Journal of Greenhouse Gas Control19, 1–11.
    [Google Scholar]
  45. ZhangR., SenM. and SrinivasanS.2013a. A prestack basis pursuit seismic inversion. Geophysics78, R1–R11.
    [Google Scholar]
  46. ZhangR., SongX., FomelS., SenM. and SrinivasanS.2013b. Time‐lapse seismic data registration and inversion for sequestration study at cranfield. Geophysics78, B329–B338.
    [Google Scholar]
  47. ZoeppritzK.1919. Über Reflexion und Durchgang seismischer Wellen durch Unstetigkeitsflächen. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu GöttingenVII. VIIb.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12114
Loading
/content/journals/10.1111/1365-2478.12114
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error