1887
Volume 62, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

In seismic waveform inversion, non‐linearity and non‐uniqueness require appropriate strategies. We formulate four types of L2 normed misfit functionals for Laplace‐Fourier domain waveform inversion: i) subtraction of complex‐valued observed data from complex‐valued predicted data (the ‘conventional phase‐amplitude’ residual), ii) a ‘conventional phase‐only’ residual in which amplitude variations are normalized, iii) a ‘logarithmic phase‐amplitude’ residual and finally iv) a ‘logarithmic phase‐only’ residual in which the only imaginary part of the logarithmic residual is used. We evaluate these misfit functionals by using a wide‐angle field Ocean Bottom Seismograph (OBS) data set with a maximum offset of 55 km. The conventional phase‐amplitude approach is restricted in illumination and delineates only shallow velocity structures. In contrast, the other three misfit functionals retrieve detailed velocity structures with clear lithological boundaries down to the deeper part of the model. We also test the performance of additional phase‐amplitude inversions starting from the logarithmic phase‐only inversion result. The resulting velocity updates are prominent only in the high‐wavenumber components, sharpening the lithological boundaries. We argue that the discrepancies in the behaviours of the misfit functionals are primarily caused by the sensitivities of the model gradient to strong amplitude variations in the data. As the observed data amplitudes are dominated by the near‐offset traces, the conventional phase‐amplitude inversion primarily updates the shallow structures as a result. In contrast, the other three misfit functionals eliminate the strong dependence on amplitude variation naturally and enhance the depth of illumination. We further suggest that the phase‐only inversions are sufficient to obtain robust and reliable velocity structures and the amplitude information is of secondary importance in constraining subsurface velocity models.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12127
2014-04-14
2024-03-29
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.C.1980. Quantitative seismology. W. H. Freeman & Co., San Francisco.
    [Google Scholar]
  2. BangsN.L.B., MooreG.F., GulickS.P.S., PangbornE.M., TobinH.J., KuramotoS. and TairaA.2009. Broad, weak regions of the Nankai Megathrust and implications for shallow coseismic slip. Earth and Planetary Science Letters284(1‐2), 44–49.
    [Google Scholar]
  3. BednarJ.B., ShinC. and PyunS.2007. Comparison of waveform inversion, part 2: phase approach. Geophysical Prospecting55(4), 465–475.
    [Google Scholar]
  4. BleibinhausF., HoleJ.A., RybergT. and FuisG.S.2007. Structure of the California Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging. Journal of Geophysical Research112, B0631.
    [Google Scholar]
  5. BrendersA.J.2011. Strategies For Waveform Tomography of Long‐offset, 2‐D Exploration Seismic Data . PhD thesis, University of Western Ontario.
  6. BrendersA.J. and PrattR.G.2007. Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model. Geophysical Journal International168(1), 133–151.
    [Google Scholar]
  7. BrossierR., OpertoS. and VirieuxJ.2009. Seismic imaging of complex onshore structures by 2D elastic frequency‐domain full‐waveform inversion. Geophysics74(6), WCC105–WCC118.
    [Google Scholar]
  8. BrossierR., OpertoS. and VirieuxJ.2010. Which data residual norm for robust elastic frequency‐domain full waveform inversion? Geophysics75(3), R37–R46.
    [Google Scholar]
  9. BunksC., SaleckF.M., ZaleskiS. and ChaventG.1995. Multiscale seismic waveform inversion. Geophysics60(5), 1457–1473.
    [Google Scholar]
  10. ChoiY. and AlkhalifahT.2011. Application of Encoded Multi‐source Waveform Inversion to Marine‐streamer Acquisition Based on the Global Correlation. EAGE extended abstract23–26.
    [Google Scholar]
  11. CraseE., PicaA., NobleM., McDonaldJ. and TarantolaA.1990. Robust elastic nonlinear waveform inversion: Application to real data. Geophysics55(5), 527–538.
    [Google Scholar]
  12. GardnerG.H.F., GardnerL.W. and GregoryA.R.1974. Formation velocity and density —The diagnostic basics for stratigraphic traps. Geophysics39(6), 770–780.
    [Google Scholar]
  13. HustedtB., OpertoS. and VirieuxJ.2004. Mixed‐grid and staggered‐grid finite‐difference methods for frequency‐domain acoustic wave modelling. Geophysical Journal International157(3), 1269–1296.
    [Google Scholar]
  14. JoC.‐H., ShinC. and SuhJ.H.1996. An optimal 9‐point, finite‐difference, frequency‐space, 2‐D scalar wave extrapolator. Geophysics61(2), 529–537.
    [Google Scholar]
  15. KameiR., PrattR. and TsujiT.2013. On acoustic waveform tomography of wide‐angle OBS data — Strategies for preconditioning and inversion. Geophysical Journal International194(2), 1250–1280.
    [Google Scholar]
  16. KameiR., PrattR.G. and TsujiT.2012. Waveform tomography imaging of a megasplay fault system in the seismogenic Nankai subduction zone. Earth and Planetary Science Letters317‐318, 343–353.
    [Google Scholar]
  17. LaillyP.1983. The seismic inverse problem as a sequence of before stack migrations. In: Conference on inverse scattering: theory and application (eds J.B.Bednar , R.Redner , E.Robinson and A.Weglein ), pp 206–220. SIAM, Society for Industrial and applied Mathematics, Philadelphia, PA.
    [Google Scholar]
  18. MalinowskiM. and OpertoS.2008. Quantitative imaging of the Permo‐Mesozoic complex and its basement by frequency domain waveform tomography of wide‐aperture seismic data from the Polish Basin. Geophysical Prospecting56(6), 805–825.
    [Google Scholar]
  19. MallickS. and FrazerL.N.1987. Practical aspects of reflectivity modeling. Geophysics52(10), 1355–1364.
    [Google Scholar]
  20. MooreG.F., ParkJ., BangsN.L., GulickS.P., TobinH.J., NakamuraY., et al. 2009. Structural and seismic stratigraphic framework of the NanTroSEIZE Stage 1 transect. In: Proc.IODP, 314/315/316, Vol 314. (eds M.Kinoshita , H.Tobin , J.Ashi , G.Kimura , S.Lallement , E.J.Screaton , D.Curewitz , H.Masago , K.T.Moe and the Expedition 314/315/316 Scientists), Integrated Ocean Drilling Program Management International, Inc.
    [Google Scholar]
  21. NakanishiA., KodairaS., MiuraS., ItoA., SatoT., ParkJ.‐O., et al. 2008. Detailed structural image around splay‐fault branching in the Nankai subduction seismogenic zone: Results from a high‐density ocean bottom seismic survey. Journal of Geophysical Research113, B03105.
    [Google Scholar]
  22. NakanishiA., TakahshiN., ParkJ.‐O., MiuraS., KodairaS., KanedaY., et al. 2002. Crustal structure across the coseismic rupture zone of the 1944 Tonankai earthquake, the central Nankai Trough seismogenic zone. Journal of Geophysical Research107(B1), 2326.
    [Google Scholar]
  23. NocedalJ. and WrightS.J.1999. Numerical Optimization. Springer.
    [Google Scholar]
  24. OpertoS., VirieuxJ., DessaJ.‐X. and PascalG.2006. Crustal seismic imaging from multifold ocean bottom seismometer data by frequency domain full waveform tomography: Application to the eastern Nankai trough. Journal of Geophysical Research111,B09306.
    [Google Scholar]
  25. ParkJ.‐O., FujieG., WijerathneL., HoriT., KodairaS., FukaoY., et al. 2010. A low‐velocity zone with weak reflectivity along the Nankai subduction zone. Geology38(3), 283–286.
    [Google Scholar]
  26. PhinneyR.A.1965. Theoretical calculation of the spectrum of first arrivals in layered elastic mediums. Journal of Geophysical Research70(20), 5107–5123.
    [Google Scholar]
  27. PolakE. and RibiéreG.1969. Note sur la convergence de mèthodes de directions conjugueées. Revue Fr. Inf. Rech. Oper.16‐R1, 35–43.
    [Google Scholar]
  28. PrattR.G.1999. Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale models. Geophysics64(3), 888–901.
    [Google Scholar]
  29. PrattR.G., HouF., BauerK. and WeberM.H.2004. Waveform tomography images of velocity and inelastic attenuation from the Mallik 2002 Crosshole Seismic Surveys. In: Scientific results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, North Territories, Canada, Volume 585 of Bulletin (eds S.R.Dallimore and T.S.Collet ), pp. 1–14. Geological Survey of Canada.
    [Google Scholar]
  30. PrattR.G., ShinC. and HicksG.1998. Gauss‐Newton and full Newton methods in frequency‐space seismic waveform inversions. Geophysical Journal International133(2), 341–362.
    [Google Scholar]
  31. PrattR.G. and ShippR.M.1999. Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in sediments using crosshole data. Geophysics64(3), 902–914.
    [Google Scholar]
  32. PrattR.G. and WorthingtonM.H.1988. The application of diffraction tomography to cross‐hole seismic data. Geophysics53(10), 1284–1294.
    [Google Scholar]
  33. PrattR.G. and WorthingtonM.H.1990. Inverse theory applied to multi‐source cross‐hole tomography. Part 1: Acoustic wave‐equation method. Geophysical Prospecting38(3), 287–310.
    [Google Scholar]
  34. PrieuxV., BrossierR., GholamiY., OpertoS., VirieuxJ., BarkvedO.I. and KommedalJ.H.2011. On the footprint of anisotropy on isotropic full waveform inversion: the Valhall case study. Geophysical Journal International187(3), 1495–1515.
    [Google Scholar]
  35. PyunS., ShinC. and BednarJ.B.2007. Comparison of waveform inversion, part 3: amplitude approach. Geophysical Prospecting55(4), 477–485.
    [Google Scholar]
  36. RavautC., OpertoS., ImprotaL., VirieuxJ., HerreroA. and Dell'AversanaP.2004. Multiscale imaging of complex structures from multifold wide‐aperture seismic data by frequency‐domain full‐waveform tomography: application to a thrust belt. Geophysical Journal International159(3), 1032–1056.
    [Google Scholar]
  37. Roecker, S., Baker, B., and McLaughlin, J.2010. A finite‐difference algorithm for full waveform teleseismic tomography. Geophysical Journal International181(2), 1017–1040.
    [Google Scholar]
  38. ShinC. and ChaY.H.2009. Waveform inversion in the Laplace‐Fourier domains. Geophysical Journal International177(3), 1067–1079.
    [Google Scholar]
  39. ShinC. and HaW.2008. A comparison between the behavior of objective functions for waveform inversion in the frequency and Laplace domains. Geophysics73(5), VE119–VE133.
    [Google Scholar]
  40. ShinC., KooN.‐H., ChaY.H. and ParkK.‐P.2010. Sequentially ordered single‐frequency 2‐D acoustic waveform inversion in the Laplace‐Fourier domains. Geophysical Journal International181(2), 933–950.
    [Google Scholar]
  41. ShinC., MarfurtK.J., ParkK.G., MinD.‐J., YoonK., YangD.et al. 2002. Traveltime and amplitude calculation using a perturbation approach. Geophysics67(5), 1648–1655.
    [Google Scholar]
  42. ShinC. and MinD.‐J.2006. Waveform inversion using a logarithmic wavefield. Geophysics71(3), R31–R42.
    [Google Scholar]
  43. ShinC., PyunS. and BednarJ.B.2007. Comparison of waveform inversion, Part 1: conventional wavefield vs logarithmic wavefield. Geophysical Prospecting55(4), 449–464.
    [Google Scholar]
  44. SirgueL.2003. Inversion de la forme d'onde dans le domaine frequential de donnees sismiques grands offsets. PhD thesis, l'Ecole Normale Superieure de Paris.
  45. SirgueL. and PrattR.G.2004. Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies. Geophysics69(1), 231–248.
    [Google Scholar]
  46. SongZ.‐M., WilliamsonP.R. and PrattR.G.1995. Frequency‐domain acoustic‐wave modeling and inversion of crosshole data: Part II—Inversion method, synthetic experiments and real‐data results. Geophysics60(3), 796–809.
    [Google Scholar]
  47. TarantolaA.1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics49(8), 1259–1266.
    [Google Scholar]
  48. TobinH. J. and KinoshitaM.2006. NanTroSEIZE: the IODP Nankai Trough seismogenic zone experiment. Scientific Drilling2(2), 23–27.
    [Google Scholar]
  49. van LeeuwenT.V. and MulderW.A.2010. Waveform tomography by correlation optimisation. EAGE extended abstract14–17.
    [Google Scholar]
  50. ZengY.Q., HeJ.Q. and LiuQ.H.2001. The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media. Geophysics66(4), 1258–1266.
    [Google Scholar]
  51. ZhouB. and GreenhalghS.A.2003. Crosshole seismic inversion with normalized full‐waveform amplitude data. Geophysics68(4), 1320–1330.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12127
Loading
/content/journals/10.1111/1365-2478.12127
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Full Waveform; Inverse Problem; Parameter Estimation; Tomography; Velocity Analysis

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error