1887
Volume 62 Number 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The link of spectral anomalies of microtremors to underlying hydrocarbon reservoirs is very controversial, as field experiments support both positive and negative opinions, and there is not a solid theory supporting this work hypothesis. We conducted field tests at different sites, with and without oil and gas presence, to add new experimental data to the ongoing studies. Microtremor information may become repeatable (and so physically meaningful) only when the observation duration exceeds a few days, but even in this case, factors such as topography and active faults may severely bias the signal.

Ocean waves impinging the coasts provide natural background noise, which stands out clearly when the observation time exceeds a dozen days or so, in such a way that human noise is stacked out statistically over time.

Microtremors recorded in (relatively) deep wells may provide useful information about ongoing production in a reservoir, and may link well data and seismic surveys, as their interferometric analysis can provide information comparable to Vertical Seismic Profiles.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12140
2014-05-25
2024-03-28
Loading full text...

Full text loading...

References

  1. AlbarelloD. and LunedeiE.2010. Alternative interpretations of horizontal to vertical spectral ratios of ambient vibrations: new insights from theoretical modeling. Bulletin of Earthquake Engineering8, 519–534.
    [Google Scholar]
  2. AliM. Y., BerteussenK. A., SmallJ. and BarkatB.2007. A low frequency, passive seismic experiment over a carbonate reservoir in Abu Dhabi. First Break25, November, 71–73.
    [Google Scholar]
  3. AliM. Y., BerteussenK. A., SmallJ. and BarkatB.2010. Low‐frequency passive seismic experiments in Abu Dhabi, United Arab Emirates: implications for hydrocarbon detection. Geophysical Prospecting58, 875–899.
    [Google Scholar]
  4. BakulinA. and CalvertR.2006. The virtual source method: Theory and case study. Geophysics71, SI139‐SI150.
    [Google Scholar]
  5. BerteussenK. A., AliM. Y. A. and SmallJ. S.2008. A low frequency, passive experiment over a carbonate reservoir in Abu Dhabi – Wavefront and particle motion study. EAGE Annual Meeting, Expanded Abstracts, B‐046.
  6. BirkeloB., CieslikK., WittenB., MontgomeryS., ArtmanB., MillerD. and NortonM.2012. High‐quality surface microseismic data illuminates fracture treatments: A case study in the Montney. The Leading Edge31, 1318–1325.
    [Google Scholar]
  7. Bonnefoy‐ClaudetS., CottonF. and BardP.2006. The nature of noise wavefield and its applications for site effects studies: a literature review. Earth Science Reviews79, 205–227.
    [Google Scholar]
  8. BroadheadM. K.2010. Oscillating oil drops, resonant frequencies, and low‐frequency passive seismology. Geophysics75, O1–O8.
    [Google Scholar]
  9. ClaerboutJ.F.1968. Synthesis of a layered medium from its acoustic transmission response. Geophysics33, 264–269.
    [Google Scholar]
  10. DangelS., SchaepmanM. E., StollE. P., CarnielR., BarzandjiO., RodeE. D. and SingerJ. M.2003. Phenomenology of tremor‐like signals observed over hydrocarbon reservoirs. Journal of Volcanology and Geothermal Research128, 135–158.
    [Google Scholar]
  11. DasI. and ZobackM. D.2011. Long‐period, long‐duration seismic events during hydraulic fracture stimulation on a shale gas reservoir. The Leading Edge30, 778–786.
    [Google Scholar]
  12. DraganovD., CampmanX., ThorbeckeJ., VerdelA. and WapenaarK.2009.Reflection images from ambient seismic noise. Geophysics74, A63–A67.
    [Google Scholar]
  13. DraganovD., WapenaarK., MulderW., SingerJ. and VerdelA.2007. Retrieval of reflections from seismic background‐noise measurements. Geophysical Research Letters34, L04305.
    [Google Scholar]
  14. DuguidC., HallidayD. and CurtisA.2011. Source‐receiver interferometry for seismic wavefield construction and ground‐roll removal. The Leading Edge30, 838–843.
    [Google Scholar]
  15. FrehnerM., SchmalholzS. M. and PodladcikovY.2009. Spectral modifications of seismic waves propagating through solids exhibiting a resonance frequency: a 1D coupled wave propagation‐oscillation model. Geophysical Journal International176, 589–600.
    [Google Scholar]
  16. GiustinianiM., AccainoF., PicottiS. and Tinivella, U.2008. Characterization of the shallow aquifers by high‐resolution seismic data. Geophysical Prospecting56, 655–666.
    [Google Scholar]
  17. GiustinianiM., AccainoF., PicottiS. and TinivellaU.2009. 3D seismic data for shallow aquifers characterization. Journal of Applied Geophysics68, 394–403.
    [Google Scholar]
  18. GouédardP., StehlyL., BrenguierF., CampilloM., Colin de VerdièreY., LaroseE., MargerinL., RouxP., Sànchez‐SesmaF.J. and ShapiroN.M.2008. Cross‐correlation of random fields: mathematical approach and applications. Geophysical Prospecting56, 375–393.
    [Google Scholar]
  19. GreenA. and GreenhalghS.2009. Microtremor spectra: a proven means for estimating resonant frequencies and S‐wave velocities of shallow soils/sediments, but a questionable tool for locating hydrocarbon reservoirs. First Break27, 43–50.
    [Google Scholar]
  20. GreenA. and GreenhalghS.2010. Comment on “Low‐frequency microtremor anomalies at an oil and gas field in Voitsdorf, Austria” by Marc‐André Lambert, Stefan Schmalholz, Erik H. Saenger and Brian Steiner, Geophysical Prospecting 57, 393–411. Geophysical Prospecting58, 335–339.
    [Google Scholar]
  21. GrevemeyerI., HerberR. and EssenH.2000. Micro‐seismological evidence for a wave climate change in the northeast Atlantic Ocean. Nature408, 349–352.
    [Google Scholar]
  22. HallidayD. and CurtisA.2010. An interferometric theory of surface‐receiver scattering and imaging. Geophysics75, SA95–SA103.
    [Google Scholar]
  23. HanssenP. and BussatS.2008. Pitfalls in the analysis of low‐frequency passive seismic data. First Break26, 111–119.
    [Google Scholar]
  24. HerakM.2008. Model‐HVSR – a Matlab tool to model horizontal‐to‐vertical spectral ratio of ambient noise. Computational Geoscience34, 1514–1526.
    [Google Scholar]
  25. HolznerR., EschleP., FrehnerM., SaengerE. H. and SteinerB.2009. Interpretation of hydrocarbon microtremors as nonlinear oscillations driven by oceanic background waves. 76th SEG Annual Meeting, Expanded Abstracts, 2294–2298.
  26. HubralP. and KreyTh.1980. Interval velocities from seismic reflection time measurements. SEG, Tulsa, 203 pp.
    [Google Scholar]
  27. JervisM. and DasguptaS.2006. Field monitoring using a large passive seismic array in Saudi Arabia – Field pilot study. EAGE Workshop on Passive Seismic, Expanded Abstracts, A32.
  28. JervisM. and DasguptaS.2009. Recent microseismic monitoring results from VSP and permanent sensor deployments in Saudi Arabia. EAGE Workshop on Passive Seismic, Expanded Abstracts, A10.
  29. KorneevV. and BakulinA.2006. On the fundamental of the virtual source method. Geophysics71, A13–A17.
    [Google Scholar]
  30. LambertM. A., NguyenT., SaengerE. H. and SchmalholzS. M.2010b. Spectral analysis of ambient ground motion – Noise reduction techniques and a methodology for mapping horizontal inhomogeneity. Journal of Applied Geophysics58, 341–346.
    [Google Scholar]
  31. LambertM. A., SaengerE. H., QuintalB. and SchmalholzS. M.2013.Numerical simulation of ambient seismic wavefield modification caused by pore‐fluid effects in an oil reservoir. Geophysics78, doi:10.1190/GEO2011–0513.1.
    [Google Scholar]
  32. LambertM. A., SchmalholzS. M., PodladchikovY. Y. and SaengerE. H.2007. Low‐frequency anomalies in spectral ratios of single station microtremor measurements: Observations across and oil and gas field in Austria. SEG Annual Meeting, Expanded Abstracts, 1352–1356.
  33. LambertM. A., SchmalholzS. M., SaengerE. H. and SteinerB.2009. Low‐frequency microtremor anomalies at an oil and gas field in Voitsdorf, Austria. Geophysical Prospecting57, 393–411.
    [Google Scholar]
  34. LambertM. A., SchmalholzS. M., SaengerE. H. and SteinerB.2010a. Reply to comment on “Low‐frequency microtremor anomalies at an oil and gas field in Voitsdorf, Austria” by Marc‐André Lambert, Stefan Schmalholz, Erik H. Saenger and Brian Steiner, Geophysical Prospecting 57, 393–411. Geophysical Prospecting58, 341–346.
    [Google Scholar]
  35. LandauL. and LishitzE.1987. Theory of elasticity (3rd edition). Butterworth‐Heinemann, ISBN 978–0–080–33933–7.
    [Google Scholar]
  36. LermoJ. and Chavez‐GarciaF. J.1993. Site effect evaluation using spectral ratios with only one station. Bulletin of the Seismological Society of America83, 1574–1594.
    [Google Scholar]
  37. MenannoG., VesnaverA. and JervisM.2013. Borehole receiver orientation using a 3D velocity model. Geophysical Prospecting61(Suppl. 1), 215–230.
    [Google Scholar]
  38. MillerG. F. and PurseyH.1955. On the partition of energy between elastic waves in a semi‐infinite solid. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 233, n. 1192, 55–69.
    [Google Scholar]
  39. MucciarelliM. and GallipoliM. R.2001. A critical review of 10 years of microtremor HVSR technique. Bollettino di Geofisica Teorica ed Applicata42, 255–266.
    [Google Scholar]
  40. NakamuraY.1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of Railway Technical Research Institute, 30(1), 25–33.
    [Google Scholar]
  41. NakataN., SniederR., TsujiTakeshi, LarnerK. and MatsuokaT.2011. Shear wave imaging from traffic noise using seismic interferometry by cross‐coherence. Geophysics76, SA97–SA106.
    [Google Scholar]
  42. NietoD., BaradelloL., KakaS.I. and VesnaverA.2011. Microtremors, a near‐surface phenomenon?Journal of Seismic Exploration20, 379–398.
    [Google Scholar]
  43. OkadaH.2003. The microtremor survey method. Geophysical monograph series 12. SEG, Tulsa, 135 pp.
    [Google Scholar]
  44. PetersonJ.1993. Observations and modeling of background seismic noise. USGS Open File Report, 93–322, 1–95.
    [Google Scholar]
  45. RiahiN., BirkeloB. and SaengerE. H.2011. A statistical strategy to analyzing passive seismic attributes. 72th EAGE Meeting, Expanded Abstracts, P198.
  46. RiahiN., GoertzA., BirkeloB. and SaengerE. H.2013. A statistical strategy for ambient seismic wavefield analysis: investigating correlations to a hydrocarbon reservoir. Geophysical Journal International192, 148–162.
    [Google Scholar]
  47. RickettJ. and ClaerboutJ.1999. Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring. The Leading Edge18, 950–960.
    [Google Scholar]
  48. Rosa‐CintasS., Galiana‐MerinoJ.J., Rosa‐HerranzJ., MolinaS. and Giner‐CaturlaJ.2013. Suitability of 10 Hz vertical geophones for seismic noise array measurements based on frequency‐wavenumber and expected spatial autocorrelation analyses. Geophysical Prospecting61 (suppl. 1), 183–198.
    [Google Scholar]
  49. RuigrokE. N., CampmanX. and WapenaarK.2011. A deep seismic profile from noise records. EAGE Workshop on Passive Seismic, Expanded Abstracts, PAS16.
  50. SaengerE. H., SchmalholzS. M., LambertM. A., NguyenT. T., TorresA., MetzgerS., HabigerR., MüllerT., RentschS. and Mendez‐Hernández, E., 2009. A passive seismic survey over a gas field: analysis of low‐frequency anomalies. Geophysics74, O29–O40.
    [Google Scholar]
  51. SchusterG.T.2005. Fermat's interferometric principle for target‐oriented traveltime tomography. Geophysics70, U47–U50.
    [Google Scholar]
  52. SchusterG.T.2009. Seismic interferometry. Cambridge University Press, 260 pp.
    [Google Scholar]
  53. SteinerB., SaengerE., SchmalholzS.2008. Time reverse modeling of low‐frequency microtremors: application to hydrocarbon reservoir localization. Geophysical Research Letters35, L03307.
    [Google Scholar]
  54. van MastrigtP. and Al‐DulaijanA.2008. Seismic spectroscopy using amplified 3C geophones. EAGE Annual Meeting, Expanded Abstracts, B‐047.
  55. VesnaverA., BridleR., LeyIIR. and LinerC.2009. Painting the near surface using geology, geophysics, and satellites. Geophysics74, B61–B69.
    [Google Scholar]
  56. VesnaverA., MenannoG., KakaS. I. and JervisM.2011. 3D polarization analysis of surface and borehole microseismic data. SEG Annual Meeting, Expanded Abstracts, PSC P2.
  57. WapenaarK., DraganovD., SniederR., CampmanX. and VerdelA.2010a. Tutorial on seismic interferometry: Part 1 – Basic principles and applications. Geophysics75, 75A195–75A209.
    [Google Scholar]
  58. WapenaarK., SlobE., SniederR. and CurtisA.2010b. Tutorial on seismic interferometry: Part 2 – Underlying theory and new advances. Geophysics75, 75A211–75A227.
    [Google Scholar]
  59. WittenB. and ArtmanB.2011. Signal‐to‐noise estimates of time‐reverse images. Geophysics76, MA1–MA10.
    [Google Scholar]
  60. Working Group OASIS
    Working Group OASIS2011. The OGS Archive System of Instrumental Seismology. http://oasis.inogs.it.
  61. ZhangJ., GerstoftP. and ShearerP.2009. High‐frequency p‐wave seismic noise driven by ocean winds. Geophysical Research Letters36, L09302.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12140
Loading
/content/journals/10.1111/1365-2478.12140
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error