1887
Volume 12 Number 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

In closed hazardous waste (i.e. industrial) landfills, impermeable covers are used to seal in the waste so as to minimise water infiltration and the accumulation of leachate inside the waste. In this paper, we present a geophysical study performed on a French landfill where the cover was designed using impermeable (clay) and drainage (sand) layers along with a Geosynthetic Clay Liner (GCL) in between. As observed, the quantity of leachate increases after rain events making the leachate treatment more expensive. This could be due to areas of weakness in the cover that have developed over time or which date back to its installation. Three different geophysical methods were employed and confronted to detect and assess such damage, and, if necessary, to help choose the most suitable remediation of the cover: Automatic Resistivity Profiling (ARP) which enables a rapid mapping of the entire landfill; the self‐potential method (SP) as one of its sources is water drainage; and electrical resistivity tomography (ERT) to obtain 2D resistivity models. Based on the ARP results revealing high lateral heterogeneities of the superficial cover materials, the SP and ERT measurements were conducted on a limited area. A negative SP anomaly was observed at the top of the landfill, where the cover is the thinnest and the GCL the most damaged, suggesting preferential infiltration under the GCL. The 2D ERT profile showed both vertical and horizontal variations. Comparison with manual auger holes showed that the alternating clayey and sandy layers did not conform to plans for the original cover when it was installed at this site about twenty years ago. Variations in electrical resistivity noticed at the depth of the GCL were attributed to possible damage to the GCL and a greater than expected permeability since the GCL is normally very resistive. The results obtained in this study were important to understand the damage to the cover due to the use of different types and thicknesses of cover materials compared to what was originally planned, and deterioration of the GCL.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2014018
2013-12-01
2024-04-26
Loading full text...

Full text loading...

References

  1. Abu‐HassaneinZ.S., BensonC.H. and BlotzL.R.1996. Electrical resistivity of compacted clays. Journal of Geotechnical Engineering122, 397–406.
    [Google Scholar]
  2. ASTM Standard. D6747.
    ASTM Standard. D6747.2004. Standard Guide for Selection of Techniques for Electrical Detection of Potential Leak Paths in Geomembranes.
    [Google Scholar]
  3. BeckA.2011. Technical improvements in Dipole Geoelectric Survey Methods. Symposium on geosynthetics (GEOFRONTIERS),Dallas, USA. doi: 10.1061/41165(397)290.
    [Google Scholar]
  4. BernstoneC., DahlinT., OhlssonT. and HoglandW.2000. DC‐resistivity mapping of internal landfill structures: two pre‐excavation surveys. Environmental Geology39, 360–371.
    [Google Scholar]
  5. BessonA., CousinI., SamouëlianA., BoizardH. and RichardG.2004. Structural heterogeneity of the soil tilled layer as characterized by 2D electrical resistivity surveying. Soil and Tillage Research79, 239–249.
    [Google Scholar]
  6. BolèveA., RevilA., JanodF., MattiuzzoJ.L. and FryJ.‐J.2009. Preferential fluid flow pathways in embankment dams imaged by selfpotential tomography. Near Surface Geophysics7, 447–462.
    [Google Scholar]
  7. BouazzaA.2002. Geosynthetic Clay Liners. Geotextiles and Geomembranes20, 3–17.
    [Google Scholar]
  8. BoudreaultJ.P., DubeJ.S., ChouteauM., WiniarskiT. and HardyE.2010. Geophysical characterization of contaminated urban fills. Engineering Geology116, 196–206.
    [Google Scholar]
  9. BrunetP., ClémentR. and BouvierC.2010. Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT) – A case study in the Cevennes area, France. Journal of Hydrology380, 146–153.
    [Google Scholar]
  10. CampanaS. and DabasD.2011. Archeological Impact Assessment: The BREBEMI Project (Italy). Archeological Prospection18, 139–148.
    [Google Scholar]
  11. CarpenterP.J., CalkinS.F. and KaufmannR.S.1991. Assessing a fractured landfill cover using electrical resistivity and seismic refraction techniques. Geophysics56, 1896–1904.
    [Google Scholar]
  12. CassianiG., FusiN., SusanniD. and DeianaR.2008. Vertical radar profiling for the assessment of landfill capping effectiveness. Near Surface Geophysics6, 133–142.
    [Google Scholar]
  13. ChambersJ.E., KurasO., MeldrumP.I., OgilvyR.D. and HollandsJ.2002. Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste‐disposal site. Geophysics71, 231–239.
    [Google Scholar]
  14. ClémentR., OxarangoL. and DescloitresM.2011. Contribution of 3‐D time‐lapse ERT to the study of leachate recirculation in a landfill. Waste Management31, 457–467.
    [Google Scholar]
  15. ColucciP., DarilekG.T., LaineD.L. and BinleyA.1999. Locating landfill leaks covered with waste. Seventh International Waste Management and Landfill Symposium,Cagliari, Italy. 4 p.
    [Google Scholar]
  16. CostantiniE.A.C., AndrenelliM.C., BucelliP., MaginiS., NatarelliL., PellegriniS.et al.2009. Strategies of ARP application (Automatic Resistivity Profiling) for viticultural precision farming. Geophysical Research Abstracts11, EGU2009‐8061‐1.
    [Google Scholar]
  17. DabasM.2009. Theory and practice of the new fast electrical imaging system ARP. In: Seeing the Unseen. Geophysics and Landscape Archaeology, (eds S.Campana and S.Piro ), 105–126. CRC Press.
    [Google Scholar]
  18. DoussanC., JouniauxL. and ThonyJ.L.2002. Variations of self‐potential and unsaturated water flow with time in sandy loam and clay loam soils. Journal of Hydrology267, 173–185.
    [Google Scholar]
  19. EdwardsL.S.1977. A modified pseudosection for resistivity and IP. Geophysics42, 1020–1036.
    [Google Scholar]
  20. EgloffsteinT.A.2001. Natural bentonites ‐ influence of the ion exchange and partial desiccation on permeability and self‐healing capacity of bentonites used in GCLs. Geotextiles and Geomembranes19, 427–444.
    [Google Scholar]
  21. FinizolaA., LénatJ.‐F., MacedoO., RamosD., ThouretJ‐C. and F.Sortino.2004. Fluid circulation and structural discontinuities inside Misti volcano (Peru) inferred from self‐potential measurements. Journal of Volcanology and Geothermal Research135(4), 343–360.
    [Google Scholar]
  22. ForgetB., RollinA.L. and JacquelinT.2005. Lessons learned from 10 years of leak detection surveys on geomembrane. Symposium on Waste Management and Landfill,Sardinia, Italy. 9 p.
    [Google Scholar]
  23. GallasJ.D.F., TaioliF. and FilhoW.M.2010. Induced polarization, resistivity, and self‐potential: a case history of a contamination evaluation due to landfill leakage. Environmental Earth Sciences63, 251–261. ISSN: 1866‐6280.
    [Google Scholar]
  24. GebbersR., LückE., DabasM. and DomschH.2009. Comparison of instruments for geoelectrical soil mapping at the field scale. Near Surface Geophysics7, 179–190.
    [Google Scholar]
  25. GenelleF., SirieixC., NaudetV., RissJ., NaessensF., ReniéS.et al.2011. Geophysical methods applied to characterize landfill covers with geocomposite. Symposium on geosynthetics (GEOFRONTIERS),Dallas, USA. doi:10.1061/41165(397)199.
    [Google Scholar]
  26. GenelleF.2012. Les méthodes géophysiques pour la caractérisation des couvertures d’installation de stockage de déchets.Thèse de l’Université Bordeaux 1. 366 p.
    [Google Scholar]
  27. GenelleF., SirieixC., RissJ. and NaudetV.2012. Monitoring landfill cover by electrical resistivity tomography on an experimental site. Engineering Geology145, 18–29.
    [Google Scholar]
  28. GhinassiG., PagniP.P and VieriM.2010. Optimizing vineyard irrigation through the automatic resistivity profiling (ARP) technology. The proposal of a methodological approach. 10th International Conference on Precision Agriculture,Denver, USA.
    [Google Scholar]
  29. GourcJ.P., CampS., ViswanadhamB.V.S. and RajeshS.2010. Deformation behavior of clay cap barriers of hazardous waste containment systems: Full‐scale and centrifuge tests. Geotextiles and Geomembranes28, 281–291.
    [Google Scholar]
  30. GrellierS., GuérinR., RobainH., BobachevA., VermeerschF. and TabbaghA.2008. Monitoring of leachate recirculation in a bioreactor landfill by 2D electrical resistivity imaging. Journal of Environmental and Engineering Geophysics13, 351–359.
    [Google Scholar]
  31. GuérinR., BégassatP., BenderitterY., DavidJ., TabbaghA. and ThiryM.2004. Geophysical study of the industrial waste land in Mortagne‐du‐Nord (France) using electrical resistivity. Near Surface Geophysics3, 137–143.
    [Google Scholar]
  32. GuyonnetD., GourryJ.‐C., BertrandL. and AmraouiN.2003. Heterogeneity detection in an experimental clay liner. Canadian Geotechnology40, 149–160.
    [Google Scholar]
  33. HansenR. and BeckA.2009. Electrical Leak Location Surveys for Landfill Caps. Symposium on the perspective on environmental and water resources (Environmental and Water Resources Institute conference),Bangkok, Thailand.
    [Google Scholar]
  34. JardaniA. and RevilA2009. Stochastic joint inversion of temperature and self‐potential data. Geophysical Journal International179, 640–654. doi: 10.1111/j.1365‐246X.2009.04295.x
    [Google Scholar]
  35. JohanssonS. and DahlinT.1996. Seepage monitoring in an earth embankment dam by repeated resistivity measurements. European Journal of Environmental and Engineering Geophysics1, 229–247.
    [Google Scholar]
  36. Journal Officiel de la République Française
    Journal Officiel de la République Française (1993). Arrêté du 18 décembre 1992 relatif au stockage de certains déchets industriels spéciaux ultimes et stabilisés pour les installations existantes.
    [Google Scholar]
  37. JouniauxL., MaineultA., NaudetV., PesselM. and SailhacP.2009. Review of self‐potential methods in hydrogeophysics. Comptes Rendus Geosciences341, 928–936.
    [Google Scholar]
  38. LaineD.L., BinleyA.M. and DarilekG.T.1997. Locating Geomembrane Liner Leaks Under Waste in a Landfill. Symposium on Geosynthetics,Long Beach California, USA.
    [Google Scholar]
  39. LénatJ.‐F.2007. Retrieving Self Potential anomalies in a complex volcanic environment: a SP/elevation gradient approach. Near Surface Geophysics5(3), 161–170.
    [Google Scholar]
  40. LerouxV., DahlinT. and SvenssonM.2007. Dense resistivity and induced polarization profiling for a landfill restoration project at Härlöv, Southern Sweden. Waste Management and Research25, 49–60.
    [Google Scholar]
  41. LindeN., DoetschJ., JougnotD., GenoniO., DürstY., MinsleyB.J.et al.2011. Self‐potential investigations of a gravel bar in a restored river corridor. Hydrology and Earth System Sciences15, 729–742.
    [Google Scholar]
  42. LokeM.H., AcworthI. and DahlinT.2003. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics34, 182–187.
    [Google Scholar]
  43. LokeM.H.2010. Tutorial: 2‐D and 3‐D electrical imaging surveys.
    [Google Scholar]
  44. MailletR.1947. The fundamental equations of electrical prospecting. Geophysics12, 529–556.
    [Google Scholar]
  45. MaineultA., BernabéY. and AckererP.2004. Electrical response of flow, diffusion and advection in a laboratory sand‐box. Vadose Zone Journal3, 1180–1192.
    [Google Scholar]
  46. MaineultA., StrobachE. and RennerJ.2008. Self‐potential signals induced by periodic pumping tests. Journal of Geophysical Research113.
    [Google Scholar]
  47. MelchiorS.1997. In situ studies of the performance of landfill caps (compacted soil liners, geomembranes, geosynthetic clay liners, capillary barriers). Land Contamination and Reclamation5, 209–216. doi: 10.2462/09670513.944.
    [Google Scholar]
  48. MichotD., BenderitterY., DorignyA., NicoullaudB., KingD. and TabbaghA.2003. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research39, 1138.
    [Google Scholar]
  49. NaudetV., RevilA., RizzoE., BotteroJ.‐Y. and BégassatP.2004. Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrology and Earth System Sciences8, 8–22.
    [Google Scholar]
  50. NaudetV. and RevilA.2005. A sandbox experiment to investigate bacteria‐mediated redox processes on self‐potential signals. Geophysical Research Letters32, L11405.
    [Google Scholar]
  51. NaudetV., GenelleF., DabasM., SirieixC., RissJ., DubéarnesB.et al.2011. On the geoelectrical characterization of an old landfill cover. Near Surface 17th European Meeting of Environmental and Engineering Geophysics,Leicester (UK).
    [Google Scholar]
  52. NaudetV., GourryJ.‐C., GirardJ.‐F. and DeparisJ.2012. Geoelectrical characterization of the internal structure and biodegradation of an old Municipal Solid Waste. 2nd Workshop on Geophysical Measurements in Waste Management,Malmö.
    [Google Scholar]
  53. NaudetV., GourryJ.‐C., GirardJ.‐F., MathieuF. and SaadaA.2014. 3D electrical resistivity tomography to locate DNAPL contamination around a housing estate, Special Topic: Geotechnical Assessment and Geoenvironmental Engineering. Near Surface Geophysics12(3), 351–360. doi: 10.3997/1873‐0604.2012059.
    [Google Scholar]
  54. OgilvyR.D., MeldrumP.I., ChambersJ.E. and WilliamsG.2002. The use of 3D electrical resistivity tomography to characterise waste and leachate distributions within a closed landfill, Thriplow, UK. Journal of Environmental and Engineering Geophysics7, 11–18.
    [Google Scholar]
  55. PapadopoulosN.G., TsokasG.N., DabasM., YiM.‐J., KimJ.‐H. and TsourlosP.2009. Three‐dimensional inversion of Automatic Resistivity Profiling data. Archeological Prospection16, 267–278.
    [Google Scholar]
  56. PetiauG.2000. Second generation of lead‐lead chloride electrodes for geophysical applications. Pure and Applied Geophysics157, 357–382.
    [Google Scholar]
  57. Peter BorieM., SirieixC., NaudetV. and RissJ.2011. Electrical resistivity monitoring with buried electrodes and cables : noise estimation with repeatability measurements. Near Surface Geophysics9, 369–380.
    [Google Scholar]
  58. RamalhoE.C., DillA.C. and RochaR.2013. Assessment of the leachate movement in a sealed landfill using geophysical methods. Environmental Earth Science68, 343–354. doi: 10.1007/s12665‐012‐1742‐8.
    [Google Scholar]
  59. RevilA., KaraoulisM., JohnsonT. and KemmaA.2012. Review: Some low‐frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeology Journal20, 617–658.
    [Google Scholar]
  60. RevilA., MendonçaC. A.,AtekwanaE., KulessaB., HubbardS. S. and BolhenK.2010. Understanding biogeobatteries: Where geophysics meets microbiology. Journal of Geophysical Research115, G00G02, doi:10.1029/2009JG001065.
    [Google Scholar]
  61. ReynoldsJ.M. and TaylorD.I.1996. Use of geophysical surveys during the planning, construction and remediation of landfills. Engineering Geology Special Publications11, 93–98.
    [Google Scholar]
  62. RizzoE., SuskiB., RevilA., StrafaceS. and TroisiS.2004. Self‐potential signals associated with pumping tests experiments. Journal of Geophysical Research109. doi: 10.1029/2004JB003049.
    [Google Scholar]
  63. SamouëlianA., CousinI., RichardG., TabbaghA. and BruandA.2003. Electrical Resistivity Imaging for Detecting Soil Cracking at the Centimetric Scale. Soil Science Society of America67, 1319–1326.
    [Google Scholar]
  64. SaportaG.1990. Probabilités et Analyses des Données et Statistique.Editions Technip, Paris, 493 p.
    [Google Scholar]
  65. SchwartzB.F., SchreiberM.E. and YanT.2008. Quantifying field‐scale soil moisture using electrical resistivity imaging. Journal of Hydrology362, 234–246.
    [Google Scholar]
  66. SirieixC., Fernández MartínezJ.‐L., RissJ. and GenelleF.2013. Electrical resistivity characterization and defect detection on a geosynthetic clay liner on an experimental site. Journal of Applied Geophysics90, 19–26.
    [Google Scholar]
  67. SjödahlP., DahlinT., JohanssonS. and LokeM.H.2008. Resistivity monitoring for leakage and internal erosion detection at Hällby embankment dam. Journal of Applied Geophysics65, 155–164.
    [Google Scholar]
  68. SlobE., SniederR. and RevilA.2010. Retrieving electrical resistivity data from self‐potential measurements by cross‐correlation. Geophysical Research Letters37L04308. doi: 10.1029/2009GL042247.
    [Google Scholar]
  69. ThonyJ.L., MoratP., VachaudG. and Le MouëlJ.L.1997. Field characterization of the relationship between electrical potential gradients and soil water flux. CR Academy of Science Paris, Earth Planetary Science325, 317–321.
    [Google Scholar]
  70. Touze‐FoltzN.2001. Modélisation des transferts advectifs dans les étanchéités composites des centres de stockage de déchets.Thèse de l’Ecole Nationale Supérieure des Mines de Paris. 286 p.
    [Google Scholar]
  71. TyeA.M., KesslerH., AmbroseK., WilliamsJ.D.O., TragheimD., ScheibA.et al.2011. Using integrated near‐surface geophysical surveys to aid mapping and interpretation of geology in an alluvial landscape within a 3D soil‐ geology framework. Near Surface Geophysics9, 15–31.
    [Google Scholar]
  72. VaudeletP., SchmutzM., PesselM., FranceschiM., GuérinR., AtteiaO.et al.2011. Mapping of contaminant plumes with geoelectrical methods. A case study in urban context. Journal of Applied Geophysics75, 738–751. doi: 10.1016/j.jappgeo.2011.09.023
    [Google Scholar]
  73. WhiteC.C. and BarkerR.D.1997. Electrical leak detection system for landfill liners: a case history. Ground Water Monitoring and Remediation17, 153–159.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2014018
Loading
/content/journals/10.3997/1873-0604.2014018
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error