1887
Volume 12 Number 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

A tomographic ‐wave velocity model is inferred from a ground level‐to‐gallery vertical 500 m × 800 m seismic experiment conducted at the inter‐Disciplinary Underground Science and Technology Laboratory (LSBB, France). No initial knowledge of the velocity structure of the surrounding fractured‐porous carbonates was previously available. Ninety‐four shots at the surface were recorded by a line of 189 seismometers on the steep slope of the topographic surface and by a line of 150 geophones in an 800 m‐long, 250‐500 m‐depth gallery. The ‐wave velocities inferred from first‐arrival travel time inversion display a relatively large set of values ranging from 4000 to 6000 m/s. Such variations correlate well with the 5 to 20% porosity variations between the main geological units that consist of two sedimentary facies affected by a complex cemented fault zone.

Taking advantage of the known geology of the site, this study explores the influence of the acquisition geometry impacted by the topography and of the near‐surface weathered zone onto the shallow tomography resolution ability. Considering the mesoscopic scale of the targeted medium, reliable imaging of hectometric geological bodies with 10% contrasts in porosities can be achieved only with the simultaneous association of () a high density of sources and receivers in the monitoring array geometry, and () the equal consideration of surface‐to‐gallery and surface‐to‐surface first‐arrival travel times, as an essential constraint to correctly image the underlying structures.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2014025
2014-01-01
2024-03-28
Loading full text...

Full text loading...

References

  1. Arnaud‐VanneauA., ArnaudH., CharollaisJ., ConradM.A., CotillonP., FerryS.et al. 1979Paleogeography of the Urgonian limestones of the Southern France. Geobios12(1), 363–383.
    [Google Scholar]
  2. BartonN.2007. Rock Quality, Seismic Velocity, Attenuation and Anisotropy.Taylor & FrancisLondon.
    [Google Scholar]
  3. BerešJ., ZeyenH., SénéchalG., RoussetD. and GaffetS.2013. Seismic anisotropy analysis at the Low‐Noise Underground Laboratory (LSBB) of Rustrel (France). Journal of Applied Geophysics94, 59–71. doi:10.1016/j.jappgeo.2013.04.008
    [Google Scholar]
  4. BouchonM. and BarkerJ.S.1996. Seismic response of a hill: the example of Tarzana, California. Bulletin of the Seismological Society of America86(1A), 66–72.
    [Google Scholar]
  5. BrossierR., OpertoS. and VirieuxJ.2009. Seismic imaging of complex onshore structures by 2D elastic frequency‐domain full‐waveform inversion. Geophysics74(6), WCC105–WCC118. doi:10.1190/ 1.3215771
    [Google Scholar]
  6. BrossierR., OpertoS. and VirieuxJ.2010. Which data residual norm for robust elastic frequency‐domain full waveform inversion?Geophysics75(3), R37–R46. doi:10.1190/1.3379323
    [Google Scholar]
  7. BrossierR.2011. Two‐dimensional frequency‐domain visco‐elastic full waveform inversion: Parallel algorithms, optimization and performance. Computers & Geosciences37(4), 444–455. doi:10.1016/j. cageo.2010.09.013
    [Google Scholar]
  8. ChaljubE., MoczoP., TsunoS., BardP.‐Y., KristekJ., KäserM.et al.2010. Quantitative comparison of four numerical predictions of 3D ground motion in the Grenoble valley, France. Bulletin of the Seismological Society of America100(4), 1427–1455.
    [Google Scholar]
  9. CouturaudA.1993. Hydrogeology of the Western part of the Vaucluse Aquifer. Ph.D Thesis, University of Avignon and the Vaucluse Counties, France.
    [Google Scholar]
  10. DessaJ.‐X., OpertoS., KodairaS., NakanishiA., PascalG., UhiraK.et al.2004. Deep seismic imaging of the eastern Nankai trough, Japan, from multifold ocean bottom seismometer data by combined travel time tomography and prestack depth migration. Journal of Geophysical Research109, B02111. doi:10.1029/2003JB002689
    [Google Scholar]
  11. DvorkinJ., PrasadM., SakaiA. and LavoieD.1999. Elasticity of marine sediments: rock physics modeling. Geophysical Research Letters26(12), 1781–1784. doi:10.1029/1999GL900332
    [Google Scholar]
  12. EberliG.P. and BaechleG.T.2003. Factors controlling elastic properties in carbonate sediments and rocks. The Leading Edge22(7), 654–660. doi:10.1190/1.1599691
    [Google Scholar]
  13. EbisuS., AydanÖ., KomuraS. and KawamotoT.1992. Comparative study on various rock mass characterization methods for surface structures. ISRM Symp. On Eurock 92,Chester, UK, 203–208, London: Thomas Telford.
    [Google Scholar]
  14. FournierF., LeonideP., BiscarratK., GalloisA., BorgomanoJ. and FoubertA.2011. Elastic properties of microporous cemented grain‐stones. Geophysics76(6), E211–E226. doi:10.1190/GEO2011‐0047.1
    [Google Scholar]
  15. GaffetS., GuglielmiY., VirieuxJ., WaysandG., ChwalaA., StolzR.et al.2003. Simultaneous seismic and magnetic measurements in the Low‐Noise Underground Laboratory (LSBB) of Rustrel, France, during the 2001 January 26 Indian earthquake. Geophysical Journal International155(3), 981–990. doi:10.1111/j.1365‐246X.2003.02095.x
    [Google Scholar]
  16. HarrisM. and YoungC.1997. MATSEIS: a seismic GUI and toolbox for Matlab. Seismological Research Letters68, 267–269.
    [Google Scholar]
  17. HoleJ.A. and ZeltB.C.1995. 3‐D finite difference reflection travel‐times. Geophysical Journal International121(2), 427–434. doi:10.1111/j.1365‐246X.1995.tb05723.x
    [Google Scholar]
  18. IannacchioneA.T. and CoyleP.R.2002. An examination of the Loyalhanna limestone’s structural features and their impact on mining and ground control practices. Proceedings of the 21st International Conference on Ground Control in Mining,Morgantown, WV, 218–227.
    [Google Scholar]
  19. JurgawczynskiM.2007. Predicting absolute and relative permeabilities of carbonate rocks using image analysis and effective medium theory. Ph.D Thesis, Imperial College, University of London, England.
    [Google Scholar]
  20. LeeS.‐J., KomatitschD., HuangB.‐S. and TrompJ.2009a. Effects of topography on seismic wave propagation: an example from northern Taiwan. Bulletin of the Seismological Society of America99(1), 314–325.
    [Google Scholar]
  21. LeeS.‐J., ChanY.‐C., KomatitschD., HuangB.‐S. and TrompJ.2009b. Effects of realistic surface topography on seismic ground motion in the Yangminshan region of Taiwan based upon the spectral‐element method and LiDAR DTM. Bulletin of the Seismological Society of America99(2A), 681–693.
    [Google Scholar]
  22. MasseJ.P.1968. L’Urgonien de Sault, Vaucluse. Bulletin de la Societe Geologique de France9, 495–596.
    [Google Scholar]
  23. MasseJ.P.1993. Valanginian‐early Aptian carbonate platforms from Provence, South‐Eastern France. In: Cretaceous carbonate platforms, (eds J.A.Simo , R.W.Scott and J.P.Masse ). A.A.P.G. Memoir 56, 363–374.
    [Google Scholar]
  24. MaufroyE.2010. Caractérisation et modélisation numérique de l’effet de site topographique 3D: application à la Grande Montagne de Rustrel, Vaucluse. Ph.D Thesis, University of Nice Sophia‐Antipolis, France.
    [Google Scholar]
  25. MaufroyE., Cruz‐AtienzaV.M. and GaffetS.2012. A robust method for assessing 3‐D topographic site effects: a case study at the LSBB Underground Laboratory, France. Earthquake Spectra28(3), 1097–1115. doi:10.1193/1.4000050
    [Google Scholar]
  26. McCannD.M., GraingerP. and McCannC.1975. Interborehole acoustic measurements and their use in engineering geology. Geophysical Prospecting23, 50–69.
    [Google Scholar]
  27. PaigeC.C. and SaundersM.A.1982. LSQR: an algorithm for sparse linear equations and sparse least squares. Transactions on Mathematical Software8, 43–71.
    [Google Scholar]
  28. PodvinP. and LecomteI.1991. Finite difference computation of travel‐times in very contrasted velocity models: a massively parallel approach and its associated tools. Geophysical Journal International105(1), 271–284. doi:10.1111/j.1365‐246X.1991.tb03461.x
    [Google Scholar]
  29. RomdhaneA., GrandjeanG., BrossierR., RéjibaF., OpertoS. and VirieuxJ.2011. Shallow‐structure characterization by 2D elastic full‐waveform inversion. Geophysics76(3), R81–R93. doi:10.1190/1.3569798
    [Google Scholar]
  30. SjogrenB.2000. A brief study of the generalized reciprocal method and of some limitations of the method and some limitations of the method. Geophysical Prospecting48, 815–834. doi:10.1046/ j.1365‐2478.2000.00223.x
    [Google Scholar]
  31. SpencerJrJ.W. and NurA.M.1976. The effects of pressure, temperature, and pore water on velocities in westerly Granite. Journal of Geophysical Research100, 8311–8326. doi:10.1029/JB081i005p00899
    [Google Scholar]
  32. S.S.B.S. program
    S.S.B.S. program1965. Etude géologique préliminaire du P.C. de la Grande Montagne.
    [Google Scholar]
  33. TondiE., AntonelliniM., AydinA., MarchegianiL. and CelloG.2006. The role of deformation bands, stylolites and sheared stylolites in fault development in carbonate grainstones of Majella Mountain, Italy. Journal of Structural Geology28, 376–391. doi:10.1016/j.jsg.2005.12.001
    [Google Scholar]
  34. TondiE.2007. Nucleation, development and petrophysical properties of faults in carbonate grainstones: Evidence from the San Vito Lo Capo peninsula (Sicily, Italy). Journal of Structural Geology29, 614–628. doi:10.1016/j.jsg.2006.11.006
    [Google Scholar]
  35. ToomeyD.R., SolomonS.C. and PurdyG.M.1994. Tomographic imaging of the shallow crustal structure of the East Pacific Rise at 9°30’N. Journal of Geophysical Research99(B12, 24),135–24,157. doi:10.1029/94JB01942
    [Google Scholar]
  36. TrifunacM.D. and HudsonD.E.1971. Analysis of the Pacoima dam accelerogram, San Fernando, California, earthquake of 1971. Bulletin of the Seismological Society of America61(5), 1393–1141.
    [Google Scholar]
  37. TuckerB.E., KingJ.L., HatzfeldD. and NersesovI.L.1984. Observations of hard‐rock site effects. Bulletin of the Seismological Society of America74(1), 121–136.
    [Google Scholar]
  38. VidaleJ.E.1988. Finite difference calculation of travel times. Bulletin of the Seismological Society of America78(6), 2062–2076.
    [Google Scholar]
  39. WilliamsonP.R.1991. A guide to the limits of resolution imposed by scattering in ray tomography. Geophysics56(2), 202–207. doi:10.1190/1.1443032
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2014025
Loading
/content/journals/10.3997/1873-0604.2014025
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error