1887
Volume 27, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

Significant lateral variations in observed temperatures in the Beaufort‐Mackenzie Basin raise the question on the temperature‐controlling factors. Based on the structural configuration of the sediments and underlying crust in the area, we calculate the steady‐state 3D conductive thermal field. Integrated data include the base of the relic permafrost layer representing the 0 °C‐isotherm, public‐domain temperature data (from 227 wells) and thermal conductivity data. For >75% of the wells the predicted temperatures deviate by <10 K from the observed temperatures, which validates the overall model setup and adopted thermal properties. One important trend reproduced by the model is a decrease in temperatures from the western to the eastern basin. While in the west, a maximum temperature of 185 °C is reached at 5000 m below sea level, in the east the maximum temperature is 138 °C. The main cause for this pattern lies in lateral variations in thermal conductivity indicating differences in the shale and sand contents of the different juxtaposed sedimentary units. North‐to‐south temperature trends reveal the superposition of deep and shallow effects. At the southern margin, where the insulating effect of the low‐conductive sediments is missing, temperatures are lowest. Farther north, where the sub‐sedimentary continental crust is thick enough to produce considerable heat and a thick pile of sediments efficiently stores heat, temperatures tend to be highest. Temperatures decrease again towards the northernmost distal parts of the basin, where thinned continental and oceanic crust produce less radiogenic heat. Wells with larger deviations of the purely conductive model from the temperature observations (>15 K at 10% of the wells) and their basin‐wide pattern of misfit tendency (too cold vs. too warm temperature predictions) point to a locally restricted coupling of heat transport to groundwater flow.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12075
2014-07-10
2024-04-20
Loading full text...

Full text loading...

References

  1. Allen, A.A. & Allen, J.R. (2013) Basin Analysis, p. 619. Wiley‐Blackwell, Chichester, West Sussex, UK, Principles and Application to Petroleum Play Assessment. Wiley‐Blackwell, Chichester, West Sussex, UK, pp. 619.
    [Google Scholar]
  2. Allen, D.M., Michel, F.A. & Judge, A.S. (1988) The permafrost regime in the Mackenzie Delta, Beaufort Sea Region, N.W.T. and its significance to the reconstruction of the palaeoclimatic history. J. Quat. Sci., 3, 3–13.
    [Google Scholar]
  3. Amante, C. & Eakins, B.W. (2009) Etopo1 1 Arc‐minute global relief model: procedures: data sources and analysis. NOAA Tech. Memo. NESDIS NGDC, 24, 19.
    [Google Scholar]
  4. Artemieva, I.M. (2006) Global 1° x 1° thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics, 416, 245–277.
    [Google Scholar]
  5. Athy, L.F. (1930) Density, porosity and compaction of sedimentary rocks. AAPG Bull., 14, 1–24.
    [Google Scholar]
  6. Bayer, U., Scheck‐Wenderoth, M. & Koehler, M. (1997) Modelling of the 3D thermal field in the northeast German Basin. Int. J. Earth Sci. (Geol. Rundsch.), 86, 241–251.
    [Google Scholar]
  7. Bense, V.F., Person, M.A., Chaudhary, K., You, Y., Cremer, N. & Simon, S. (2008) Thermal anomalies indicate preferential flow along faults in unconsolidated sedimentary aquifers. Geophys. Res. Lett., 35, L24406, 1–6.
    [Google Scholar]
  8. Birch, F., Roy, E.R. & Decker, E.R. (1968) Heat flow and thermal history in New England and New York. In: Studies of Appalachian Geology (Ed. by E.An‐Zen ), pp. 437–451. Wiley (Interscience), New York.
    [Google Scholar]
  9. Blythe, A.E., Murphy, J. & O'sullivan, P.B. (1997) Tertiary cooling and deformation in the South‐Central brooks range: evidence from zircon and apatite fission‐track analyses. J. Geol., 105, 583–599.
    [Google Scholar]
  10. Cacace, M., Kaiser, B.O., Lewerenz, B. & Scheck‐Wenderoth, M. (2010) Geothermal energy in sedimentary basins: what we can learn from regional numerical models. Chem. Erde, 70, 33–46.
    [Google Scholar]
  11. Cacace, M., Blöcher, M.G., Watanabe, N., Moeck, I., Börsing, N., Scheck‐Wenderoth, M., Kolditz, O. & Huenges, E. (2013) Modelling of fractured carbonate reservoirs ‐ Outline of a novel technique via a case study from the Molasse Basin, Southern Bavaria (Germany). Environ. Earth Sci., 70, 3585–3602.
    [Google Scholar]
  12. Caine, J.S., Evans, J.P. & Forster, C.B. (1996) Fault zone architecture and permeability structure. Geology, 24, 1025–1028.
    [Google Scholar]
  13. Chen, Z., Osadetz, K.G., Issler, D.R. & Grasby, S.E. (2008) Hydrocarbon migration detected by regional temperature field variations, Beaufort‐Mackenzie Basin, Canada. AAPG Bull., 92, 1639–1653.
    [Google Scholar]
  14. Chen, Z., Issler, D.R., Osadetz, K.G. & Grasby, S.E. (2010) Pore pressure patterns in tertiary successions and hydrodynamic implications, Beaufort‐Mackenzie Basin, Canada. Bull. Can. Pet. Geol., 58, 3–16.
    [Google Scholar]
  15. Cherubini, Y., Cacace, M., Scheck‐Wenderoth, M., Moeck, I. & Lewerenz, B. (2013) Controls on the deep thermal field ‐ implications from 3D numerical simulations for the geothermal research site Groß Schönebeck. Environ. Earth Sci., 70, 3619–3642.
    [Google Scholar]
  16. Christensen, N.I. & Mooney, W.D. (1995) Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res., 100, 9761–9788.
    [Google Scholar]
  17. Clauser, C. (2011) Thermal storage and transport properties of rocks, Ii: thermal conductivity and diffusivity. In: Encyclopedia of Solid Erath Geophysics (Ed. by H.Gupta ), pp. 1431–1448. Springer, Dordrecht.
    [Google Scholar]
  18. Danish Meteorological Institute
    Danish Meteorological Institute , Centre for Ocean and Ice (2011) Sea surface temperature 2011092100. http://ocean.dmi.dk/arctic/satellite/index.uk.php.
  19. Deming, D., Sass, J.H., Lachenbruch, A.H. & de Rito, R.F. (1992) Heat flow and subsurface temperature as evidence for basin‐scale ground‐water flow, North Slope of Alaska. Geol. Soc. Am. Bull., 104, 528–542.
    [Google Scholar]
  20. Dixon, J. (1996) Geological atlas of the Beaufort‐Mackenzie Area, Ottawa.
  21. Dixon, J., Dietrich, J.R. & McNeil, D.H. (1992) Upper cretaceous to pleistocene sequence stratigraphy of the Beaufort‐Mackenzie and Banks Islands Areas, Northwest Canada. Geol. Surv. Can. Bull., 407, 90.
    [Google Scholar]
  22. Doan, M.L. & Cornet, F.H. (2007) Thermal anomaly near the aigio fault, Gulf of Corinth, Greece, maybe due to convection below the fault. Geophys. Res. Lett., 34, 5.
    [Google Scholar]
  23. Duk‐Rodkin, A. & Lemmen, D.S. (2000) Glacial history of the Mackenzie Region; in the physical environment of the Mackenzie Valley, Northwest Territories,: a base Line for the asessment of environmental change. Geol. Surv. Can. Bull., 547, 11–20.
    [Google Scholar]
  24. Fuchs, S., Schütz, F., Förster, H.‐J. & Förster, A. (2013) Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: correction charts and new conversion equations. Geothermics, 47, 40–52.
    [Google Scholar]
  25. Fuis, G.S., Levander, A.R., Lutter, W.J., Wissinger, E.S., Moore, T.E. & Christensen, N.I. (1995) Seismic images of the brooks range, Arctic Alaska, reveal crustal‐scale duplexing. Geology, 23, 65–68.
    [Google Scholar]
  26. Gradstein, F.M., Ogg, J.G., Smith, A.G., Agterberg, F.P., Bleeker, W., Cooper, R.A., Davydov, V., Gibbard, P., Hinnov, L.A., House, M.R., Lourens, L., Luterbacher, H.‐P., McArthur, J., Melchin, M.J., Robb, L.J., Shergold, J., Villeneuve, M., Wardlaw, B.R., Ali, J., Brinkhuis, H., Hilgen, F.J., Hooker, J., Howarth, R.J., Knoll, A.H., Laskar, J., Monechi, S., Powell, J., Plumb, K.A., Raffi, I., Röhl, U., Sanfilippo, A., Schmitz, B., Shackleton, N.J., Shields, G.A., Strauss, H., Van Dam, J., Veizer, J., van Kolfschoten, T. & Wilson, D. (2004) A Geologic Time Scale 2004. Cambridge University Press, New York.
    [Google Scholar]
  27. Grantz, A., Hart, P.E. & Childers, V.A. (2011) Chapter 50: geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean. In: Arctic Petroleum Geology (Ed. by C.J.Spencer , A.F.Embry , D.L.Gautier , A.V.Stoupakova & K.Sörensen ), 35, pp. 771–799. Geological Society of London, Memoirs, London.
    [Google Scholar]
  28. Hillis, R., Sandiford, M., Coblentz, D. & Zhou, S. (1997) Modelling the contemporary stress field and its implications for hydrocarbon exploration. Explor. Geophys., 28, 88–93.
    [Google Scholar]
  29. Horai, K.I. (1971) Thermal conductivity of rockforming minerals. J. Geophys. Res., 76, 1278–1308.
    [Google Scholar]
  30. Hu, K. & Issler, D.R. (2009) A comparison of core petrophysical data with well log parameters, Beaufort‐Mackenzie Basin. Geological Survey of Canada Open File 6042, 13.
  31. Hu, K., Issler, D.R. & Jessop, A.M. (2010) Well temperature data compilation, correction and quality assessment for the Beaufort‐Mackenzie Basin. Geological Survey of Canada Open File 6057, 14.
  32. Isachsen, C.E. & Bowring, S.A. (1994) Evolution of the slave craton. Geology, 22, 917–920.
    [Google Scholar]
  33. Issler, D.R. (1992) A new Approach to shale compaction and stratigraphic restoration, Beaufort‐Mackenzie Basin and Mackenzie Corridor, Northern Canada. AAPG Bull., 76, 1170–1189.
    [Google Scholar]
  34. Issler, D.R. & Jessop, A.M. (2011) Thermal conductivity analysis of cenozoic, mesozoic and paleozoic core samples, Beaufort‐Mackenzie Basin, Northern Canada. Geological Survey of Canada Open File 6734, 128
  35. Jaupart, C., Mareschal, J.C., Guillou‐Frottier, L. & Davaille, A. (1998) Heat flow and thickness of the lithopshere in the Canadian shield. J. Geophys. Res., 103, 15269–15286.
    [Google Scholar]
  36. Jones, F.W., Majorowicz, J.A. & Dietrich, J. (1988) The geothermal regime of the Northern Yukon and Mackenzie Delta Regions of Northwest Canada ‐ Studies of two regional profiles. Pure Appl. Geophys., 127, 641–658.
    [Google Scholar]
  37. Jones, F.W., Majorowicz, J.A., Dietrich, J. & Jessop, A.M. (1990) Geothermal gradients and heat flow in the Beaufort‐Mackenzie Basin, Arctic Canada. Pure Appl. Geophys., 134, 474–483.
    [Google Scholar]
  38. Kaiser, B.O., Cacace, M., Scheck‐Wenderoth, M. & Lewerenz, B. (2011) Characterization of main heat transport processes in the Northeast German basin: constraints from 3‐D numerical models. Geochem. Geophys. Geosyst., 12, 17.
    [Google Scholar]
  39. Kroeger, K.F., Ondrak, R., di Primio, R. & Horsfield, B. (2008) A three‐dimensional insight into the Mackenzie Basin (Canada): implications for the thermal history and hydrocarbon generation potential of tertiary deltaic sequences. AAPG Bull., 92, 225–247.
    [Google Scholar]
  40. Kroeger, K.F., di Primio, R. & Horsfield, B. (2009) Hydrocarbon flow modeling in complex structures (Mackenzie Basin, Canada). AAPG Bull., 93, 1–25.
    [Google Scholar]
  41. Kroeger, K.F., di Primio, R. & Horsfield, B. (2011) Atmospheric methane from organic carbon mobilization in sedimentary basins ‐ the sleeping giant?Earth Sci. Rev., 107, 433–442.
    [Google Scholar]
  42. Lane, L.S. (1998) Latest cretaceous ‐ Tertiary tectonic evolution of Northern Yukon and Adjacent Arctic Alaska. AAPG Bull., 82, 1353–1371.
    [Google Scholar]
  43. Lane, L.S. (2007) Devonian‐carboniferous paleogeography and orogenesis, Northern Yukon and Adjacent Arctic Alaska. Can. J. Earth Sci., 44, 679–694.
    [Google Scholar]
  44. Lane, L.S. & Dietrich, J.R. (1995) Tertiary structural evolution of the Beaufort Sea ‐ Mackenzie Delta Region, Arctic Canada. Bull. Can. Pet. Geol., 43, 293–314.
    [Google Scholar]
  45. Laubach, S.E., Olson, J.E. & Gale, J.F.W. (2004) Are open fractures necessarily aligned with maximum horizontal stress?Earth Planet. Sci. Lett., 222, 191–195.
    [Google Scholar]
  46. Lemieux, J.‐M., Sudicky, E.A., Peltier, W.R. & Tarasov, L. (2008) Simulating the impact of glaciations on continental groundwater flow systems: I. Relevant processes and model formulation. J. Geophys. Res., 113, F03017. doi:10.1029/2007JF000928.
    [Google Scholar]
  47. Lewis, T.J., Hyndman, R.D. & Flück, P. (2003) Heat flow, heat generation, and crustal Temperatures in the Northern Canadian Cordillera: thermal control of tectonics. J. Geophys. Res., 108, 18.
    [Google Scholar]
  48. Majorowicz, J.A. & Grasby, S.E. (2013) Geothermal energy for Northern Canada: is it economical?Nat. Resour. Res., 23, 159–173.
    [Google Scholar]
  49. Majorowicz, J.A. & Hannigan, P.K. (2000) Stability zone of natural gas hydrates in a permafrost‐bearing region of the Beaufort‐Mackenzie Basin: study of a feasible energy source. Nat. Resour. Res., 9, 3–25.
    [Google Scholar]
  50. Mareschal, J.C. & Jaupart, C. (2004) Variations of surface heat flow and lithospheric thermal structure beneath the North American Craton. Earth Planet. Lett., 223, 65–77.
    [Google Scholar]
  51. Mathews, M.D. (1996) Migration ‐ a view from the top. In: Hydrocarbon Migration and Its Near‐Surface Expression (Ed. by D.Schumacher & M.A.Abrams ), 66, pp. 139–155. AAPG Memoir, Tulsa.
    [Google Scholar]
  52. Midttømme, K. & Roaldset, E. (1999) Thermal conductivity of sedimentary rocks: uncertainties in measurement and modelling. In: Muds and Mudstones: Physical and Fluid Flow Properties (Ed. by A.C.Aplin , A.J.Flees & J.H.S.Macquaker ), 158, pp. 45–60. Geological Society, Special Publications London, London.
    [Google Scholar]
  53. Müller, R.D., Sdrolias, M., Gaina, C. & Roest, W.R. (2008) Age, spreading rates, and spreading asymmetry of the World’s ocean crust. Geochem. Geophys. Geosyst., 9, 19.
    [Google Scholar]
  54. National Energy Board Canada
    National Energy Board Canada (2009) Table of formation tops (effective 31 March 2010), National Energy Board Canada, http://www.neb.gc.ca/clf-nsi/rthnb/nrthffshr/pblctnrprt/tblfrmtntp-eng.html.
  55. Noack, V., Cherubini, Y., Scheck‐Wenderoth, M., Lewerenz, B., Hã–Ding, T.A.S. & Moeck, I. (2010) Assessment of the present‐day thermal field (Ne German Basin) ‐ Inferences from 3d modelling. Chem. Erde, 70, 47–62.
    [Google Scholar]
  56. Noack, V., Scheck‐Wenderoth, M., Cacace, M. & Schneider, M. (2013) Influence of fluid flow on the regional thermal field: results from 3D numerical modelling for the area of Brandenburg (North German Basin). Environ. Earth Sci., 70, 3523–3544.
    [Google Scholar]
  57. Norris, D.K. & Dyke, L.D. (1997) Proterozoic, Chapter 4. In: Geology and Mineral and Hydrocarbon Potential of Northern Yukon Territory and Northwestern District of Mackenzie (Ed. by D.K.Norris ) Geol. Surv. Can. Bull., 422, 65–83.
    [Google Scholar]
  58. Norris, D.K. & Yorath, C.J. (1981) The North American plate from the arctic archipelago to the Romanz of mountains. In: The Ocean Basins and Margins (Ed. by A.E.M.Nairn , M.J.Churkin & F.G.Stehli ), 5, pp. 37–103. Springer, New York.
    [Google Scholar]
  59. O'Leary, D.M., Ellis, R.M., Stephenson, R.A., Lane, L.S. & Zelt, C.A. (1995) Crustal structure of the Northern Yukon and Mackenzie Delta, Northwestern Canada. J. Geophys. Res., 100, 9905–9920.
    [Google Scholar]
  60. Ollinger, D., Baujard, C., Kohl, T. & Moeck, I. (2010) Distribution of thermal conductivities in the Groß Schönebeck (Germany) test site based on 3D inversion of deep borehole data. Geothermics, 39, 46–58.
    [Google Scholar]
  61. Osadetz, K.G. & Chen, Z. (2010) A re‐evaluation of the Beaufort‐Mackenzie delta basin gas hydrate resource potential: petroleum system approaches ton non‐conventional gas resource appraisal and geologically‐sourced methane flux. Bull. Can. Pet. Geol., 58, 56–71.
    [Google Scholar]
  62. Osadetz, K.G., Dixon, J., Dietrich, J., Snowdon, L.R., Dallimore, S.R. & Majorowicz, J.A. (2005) A review of Mackenzie delta‐beaufort sea petroleum province conventional and non‐conventional (gas hydrate) petroleum reserves and undiscovered resources: A contribution to the resource assessment of the proposed Mackenzie Delta‐Beaufort Sea Marine Protected Areas. Geological Survey of Canada, Open File 4828, 1 CD‐ROM.
  63. Osterkamp, T.E. (2001) Sub‐sea Permafrost. In: Encyclopedia of Ocean Sciences (Ed. by JHSteele ), pp. 2902–2912. Academic Press, Oxford.
    [Google Scholar]
  64. Roberts, S.J. & Nunn, J.A. (1995) Episodic fluid expulsion from geopressured sediments. Mar. Pet. Geol., 12, 195–204.
    [Google Scholar]
  65. Rühaak, W., Rath, V. & Clauser, C. (2010) Detecting thermal anomalies within the Molasse Basin, Southern Germany. Hydrogeol. J., 18, 1897–1915.
    [Google Scholar]
  66. Russell, J.K., Dipple, G.M. & Kopylova, M.G. (2001) Heat production and heat flow in the mantle lithosphere, Slave Craton, Canada. Phys. Earth Planet. Inter., 123, 27–44.
    [Google Scholar]
  67. Rybach, L. (1986) Amount and significance of radioactive heat sources in sediments. In: Thermal Modelling in Sedimentary Basins (Ed. by J.Burrus ), pp. 311–322. Editions Technip, Paris.
    [Google Scholar]
  68. Rybach, L. & Cermák, V. (1982) Radioactive heat generation in rocks. In: Landolt‐Börnstein, Zahlenwerte Und Funktionen Aus Naturwissenschaften Und Technik, V, Band 1: Physical Properties of Rocks (Ed. by G.Angenheister ), pp. 353–371. Springer‐Verlag, Berlin, Heidelberg, New York.
    [Google Scholar]
  69. Scheck‐Wenderoth, M. & Maystrenko, Y. (2008) How warm are passive continental margins? A 3‐D lithosphere‐scale study from the norwegian margin. Geology, 36, 419–422.
    [Google Scholar]
  70. Seipold, U. (1992) Depth dependence of thermal transport properties for typical crustal rocks. Phys. Earth Planet. Inter., 69, 299–303.
    [Google Scholar]
  71. Sekiguchi, K. (1984) A method for determining terrestrial heat flow in oil basinal areas. Tectonophysics, 103, 67–79.
    [Google Scholar]
  72. Sippel, J., Scheck‐Wenderoth, M., Lewerenz, B. & Kroeger, K.F. (2013) A crust‐scale 3D structural model of the Beaufort‐Mackenzie Basin (Arctic Canada). Tectonophysics, 591, 30–51.
    [Google Scholar]
  73. Smith, S.L. & Burgess, M.M. (2002) A digital database of permafrost thickness in Canada. Geological Survey of Canada, Open File 4173, 38.
  74. Stein, C.A. & Stein, S. (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123–129.
    [Google Scholar]
  75. Stephenson, R.A., Coflin, K.C., Lane, L.S. & Dietrich, J.R. (1994) Crustal structure and tectonics of the Southeastern Beaufort sea continental margin. Tectonics, 13, 389–400.
    [Google Scholar]
  76. Turcotte, D.L. & Schubert, G. (2002) Geodynamics. Cambridge University Press, Cambridge, UK.
    [Google Scholar]
  77. USGS
    USGS (2013) August 17, 2012 15:10:40 UTC geologic province and thermo‐tectonic age maps. Retrieved May 03, 2013, from http://earthquake.usgs.gov/research/structure/crust/maps.php.
  78. Vilà, M., Fernández, M. & Jiménez‐Munt, I. (2010) Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics, 490, 152–164.
    [Google Scholar]
  79. Villeneuve, M.E., Theriault, R.J. & Ross, G.M. (1991) U‐Pb ages and Sm‐Nd signature of two subsurface granites from the Fort Simpson magnetic high, Nw Canada. Can. J. Earth Sci., 28, 1003–1008.
    [Google Scholar]
  80. Ziagos, J.P. & Blackwell, D.D. (1986) A model for the transient temperature of horizontal fluid flow in geothermal systems. J. Volcanol. Geo. Res., 27, 371–397.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12075
Loading
/content/journals/10.1111/bre.12075
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error