1887
Volume 13 Number 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

In civil engineering, ground‐penetrating radar is widely used for road pavement surveys. In contrast to the existing literature, this paper takes account of the influence of interface roughness (surface and interlayer roughness) within the scope of data processing of radar signals. The rigorous electromagnetic method PILE (Propagation Inside Layer Expansion) provides simulated data that show the influence of the interface roughness on the backscattered primary echoes of stratified media; the interface roughness provides a continuous frequency decay of the magnitude of the echoes. The observed frequency variations of the radar magnitude introduce some shape distortion on the radar waveform. The latter variations can be modelled by an exponential function, which provides satisfactory results for a narrow bandwidth (2 GHz). An adaptation of the root‐MUSIC algorithm is proposed. As a result, it is possible to jointly estimate the time delay and the interface roughness. The algorithm is tested on data simulated by the PILE method and numerical examples are provided to assess the performance of this algorithm. The associated results show that the proposed algorithm can estimate both the time delay and roughness parameters with a small relative error.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2015003
2014-10-01
2024-04-26
Loading full text...

Full text loading...

References

  1. BenedettoA., BenedettoF., De BlasiisM.R. and GiuntaG.2005. Reliability of Signal Processing Technique for Pavement Damages Detection and Classification Using Ground Penetrating Radar. IEEE Sensors Journal5(3), 471–480.
    [Google Scholar]
  2. BlaesX. and DefournyP.2008. Characterizing Bidimensional Roughness of Agricultural Soil Surfaces for SAR Modeling. IEEE Transactions on Geoscience and Remote Sensing46(12), 4050–4061.
    [Google Scholar]
  3. BourlierC., KubickéG. and DéchampsN.2009. Fast method to compute scattering by a buried object under a randomly rough surface: PILE combined with FB‐SA. Journal of the Optical Society of America A5, 260–263.
    [Google Scholar]
  4. DéchampsN., de BeaucoudreyN., BourlierC. and ToutainS.2006. Fast numerical method for electromagnetic scattering by rough layered interfaces: Propagation‐inside‐layer expansion method. Journal of the Optical Society of America A23(2), 359–369.
    [Google Scholar]
  5. DérobertX., FauchardC., CôteP., Le BrusqE., GuillantonE., DauvignacJ.Y.et al.2001. Step‐Frequency Radar Applied on Thin Road Layers. Journal of Applied Geophysics47, 317–325.
    [Google Scholar]
  6. DiamantiN. and RedmanD.2012. Field observations and numerical models of GPR response from vertical pavement cracks. Journal of Applied Physics81, 106–116.
    [Google Scholar]
  7. GiannopoulosA.2005. Modelling ground penetrating radar by GprMax. Construction and Building Materials19, 755–762.
    [Google Scholar]
  8. GiannopoulosA. and DiamantiN.2008. Numerical modelling of ground‐penetrating radar response from rough subsurface interfaces. Near Surface Geophysics6, 357–369.
    [Google Scholar]
  9. HwangH.K., AliyaziciogluZ., GriceM. and YakovlevA.2008. Direction of arrival estimation using a Root‐MUSIC Algorithm. Proceedings of the International Multi‐Conference of Engineers and Computer Scientists.
    [Google Scholar]
  10. JonardF., WeihermüllerL., VereeckenH. and LambotS.2012. Accounting for soil surface roughness in the inversion of ultra wideband off‐ground GPR signal for soil moisture retrieval. Geophysics77, H1–H7.
    [Google Scholar]
  11. LambotS., AntoineM., VancloosterM. and SlobE.2006. Effect of soil roughness on the inversion of off‐ground monostatic GPR signal for non‐invasive quantification of soil properties. Water Resources Research42, W03403.
    [Google Scholar]
  12. Le BastardC., BaltazartV., WangY. and SaillardJ.2007. Thin‐pavement thickness estimation using GPR with high‐resolution and super resolution methods. IEEE Transactions on Geoscience and Remote Sensing45(8), 2511–2519.
    [Google Scholar]
  13. LiuF.2007. Modélisation et Expérimentation Radar Impulsionnel et à Sauts de Fréquence Pour l’Auscultation de Milieux Stratifiés du Génie Civil. PhD thesis, University of Nantes, France.
    [Google Scholar]
  14. MattiaF., Le ToanT., SouyrisJ.‐C., de CarolisG., FlouryN., PosaF.et al.1997. The effect of surface roughness on multifrequency polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing35(4), 954–966.
    [Google Scholar]
  15. MoghaddarA., OgawaY. and WaltonE.K.1994. Estimating the Time‐Delay and Frequency Decay Parameter of Scattering Component Using a Modified MUSIC Algorithm. IEEE Transactions on Antennas and Propagation42(10), 1412–1418.
    [Google Scholar]
  16. ParkS‐E., MoonW.M. and KimD‐J.2009. Estimation of surface roughness parameter in intertidal mudflat using airborne polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing478(4), 1022–1031.
    [Google Scholar]
  17. PinelN., Le BastardC., BaltazartV., BourlierC. and WangY.2011. Influence of layer roughness for road survey by ground‐penetrating radar at nadir: Theoretical study. IET Radar, Sonar & Navigation5, 650–656.
    [Google Scholar]
  18. PinelN., Le BastardC., BourlierC. and SunM.2012. Asymptotic modeling of coherent scattering from random rough layers: Application to road survey by GPR at nadir. International Journal of Antennas and Propagation1, article ID 874840.
    [Google Scholar]
  19. PinelN., LiuL., BourlierC., WangY. and Le BastardC.2009. Rough thin pavement thickness estimation by GPR. IEEE International Geoscience and Remote Sensing Symposium5, 276–279.
    [Google Scholar]
  20. QuL., SunQ., YangT., ZhangL. and SunY.2014. Time‐Delay Estimation for Ground Penetrating Radar Using ESPRIT with Improved Spatial Smoothing Technique. IEEE Geoscience and Remote Sensing Letters1(8), 1315–1319.
    [Google Scholar]
  21. SaarenketoT. and ScullionT.2000. Road Evaluation with Ground Penetrating Radar. Journal of Applied Geophysics43, 119–138.
    [Google Scholar]
  22. SimoninJ‐M., BaltazartV., HornychP., DérobertX., KerzréhoJ‐P. and TrichetS.2012. Detection of debonding and vertical cracks with nondestructive techniques during accelerated pavement testing. 4th International Conference on Accelerated Pavement Testing, September 19–21, Davis, California, USA.
    [Google Scholar]
  23. SpagnoliniU.1996. Joint Approach of EM Inversion and Multi‐layer Detection/Tracking for Pavement Profiling. 6th International Conference on Ground Penetrating Radar, 235–240, September 30–October 3.
    [Google Scholar]
  24. SpagnoliniU.1997. Permittivity Measurements of Multilayered Media with Mono static Pulse Radar. IEEE Transactions on Geoscience and Remote Sensing35(2), 454–463.
    [Google Scholar]
  25. SpagnoliniU. and RampaV.1999. Multitarget Detection/Tracking for Monostatic Ground Penetrating Radar: Application to Pavement Profiling. IEEE Transactions on Geoscience and Remote Sensing37(1), 383–394.
    [Google Scholar]
  26. SunM.2012. Influence of the surface roughness of a stratified medium on the precision of measurement methods of propagation delay. Master Thesis, University of Nantes, France.
    [Google Scholar]
  27. ThorsosE. and JacksonD.1991. Studies of scattering theory using numerical methods. Waves in Random and Complex Media1, 165–190.
    [Google Scholar]
  28. Van der KrukJ., DiamantiN., GiannopoulosA. and VereeckenH.2012. Inversion of dispersive GPR pulse propagation in waveguides with heterogeneities and rough and dipping interfaces. Journal of Applied Geophysics81, 88–96.
    [Google Scholar]
  29. WangH.2014. Geophysical parameter retrieval over bare agricultural fields using multi‐angular polarimetric SAR data set. PhD thesis, Insa of Rennes.
    [Google Scholar]
  30. WuR., LiX. and LiJ.2002. Continuous Pavement Profiling with Ground‐Penetrating Radar. IEE Proc‐Radar Sonar Navigation149(4), 183–193.
    [Google Scholar]
  31. YamadaH., OhmiyaM. and OgawaY.1991. Superresolution Techniques for Time‐Domain Measurements with a Network Analyzer. IEEE Transactions on Antennas and Propagation39(2), 177–183.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2015003
Loading
/content/journals/10.3997/1873-0604.2015003
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error