1887
Volume 13 Number 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Collapsed paleocave systems are carbonate reservoirs with high internal spatial complexity that are the result of several stages of karst processes. Paleocave‐related reservoirs can be spread over large areas with significant thicknesses that are favourable for hydrocarbon exploration. Nevertheless, few studies have provided a detailed understanding of the strong lateral heterogeneity of these reservoirs and their complex karst‐controlled development using modern karst terrain analogues. To elucidate this issue, the internal architecture of a collapsed paleocave system has been mapped accurately at the western border of the Potiguar Basin in Northeastern Brazil. The collapsed paleocaves outcrop in an escarpment that delimits the carbonate platform from the transgressive phase of the basin. Electrical resistivity tomography (ERT) and ground‐penetrating radar (GPR) sections were acquired parallel and perpendicular to a road cut and served to parameterize the geophysical signatures of the collapsed paleocaves and the host rocks. The collapsed paleocaves were mapped by identifying high‐resistivity zones and high‐amplitude ground‐penetrating radar reflectors. In contrast, the host rocks are marked by low to intermediate resistivity and ground‐penetrating radar reflections that range from low amplitude to almost transparent. The resistivity data and the ground‐penetrating radar attribute of the root‐square energy enabled the mapping of the complex spatial distribution of the collapsed paleocaves system. At depths of approximately 20 m, the paleocaves are more spread out and eventually become isolated while sometimes being connected vertically through shafts. However, at shallower levels, the paleocaves are interconnected by ducts or coalesce into a system of paleocaves that are hundreds of metres long over an area of 12000 m2. The results of the study show the detailed internal geometry of this paleocave system at a subseismic scale, which enables the identification of the connectivity pattern among these karst features and the porosity and total volume of the reservoir. This system could serve as an outcrop analogue for other collapsed paleocave carbonate reservoirs worldwide.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2015013
2015-02-01
2024-04-26
Loading full text...

Full text loading...

References

  1. Al‐faresW., BakalowiczaM., GuérincR. and DukhanM.2002. Analysis of the karst aquifer structure of the Lamalou area (Hérault, France) with ground penetrating radar. Journal of Applied Geophysics51, 97–106.
    [Google Scholar]
  2. AraripeP.T. and FeijóF.J.1994. Bacia Potiguar. Boletim de Geocièncias da Petrobrás8(1), 127–141. In Portuguese.
    [Google Scholar]
  3. AraujoA.M.M., SoaresJ.A., DiasC.H., RibeiroG.A.V. and MedeirosL.C.2013. Petrofísica de tufas carbonáticas da Formação Jandaíra, Bacia Potiguar. Proceedings of the 13th Congresso Internacional da Sociedade Brasileira de Geofísica, Rio de Janeiro, Brazil, Expanded Abstracts, In Portuguese.
    [Google Scholar]
  4. BagdanC.A. and PembertonS.G.2004. Karst breccia and bank collapse breccia: Implications for reservoir characterization of the McMurray Formation, Alberta, Canada. AAPG Bulletin88, 13.
    [Google Scholar]
  5. BurkeM.J., BrennandT.A. and PerkinsA.J.2012. Transient subglacial hydrology of a thin ice sheet: insights from the Chasm esker, British Columbia, Canada. Quaternary Science Reviews58, 30–55.
    [Google Scholar]
  6. CapezzuoliE., GandinA. and PedleyM.2014. Decoding tufa and travertine (free water carbonates) in the sedimentary record: the state of the art. Sedimentology61, 1–21.
    [Google Scholar]
  7. CardarelliE., Di FilippoG. and TuccinardiE.2006. Electrical resistivity tomography to detect buried cavities in Rome: a case study. Near Surface Geophysics4, 387–392.
    [Google Scholar]
  8. ChalikakisK., PlagnesV., GuerinR., ValoisR. and BoschF.P.2011. Contribution of geophysical methods to karst‐system exploration: an overview. Hydrogeology Journal19(6), 1169–1180.
    [Google Scholar]
  9. DavisJ.L. and AnnanA.P.1989. Ground penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophysical Prospecting37, 531–551.
    [Google Scholar]
  10. De CastroD.L., MedeirosW.E., Jardim de SáE.F. and MoreiraJ.A.M.1998. Mapa gravimétrico do Nordeste Setentrional do Brasil e margem continental adjacente: interpretação com base na hipótese de isostasia. Brazilian Journal of Geophysics16(2/3), 115–131. In Portuguese.
    [Google Scholar]
  11. De Groot‐HedlinC. and ConstableS.1990. Occam’s inversion to generate smooth, two‐dimensional models from magnetotelluric data. Geophysics55, 1613–1624.
    [Google Scholar]
  12. dGB Earth Sciences
    dGB Earth Sciences . 2011. Introduction to OpendTect: Training Manual, pp. 129. dGB Earth Sciences B.V., Enschede, Netherlands.
    [Google Scholar]
  13. DouQ., SunY., SullivanC. and GuoH.2011. Paleokarst system development in the San Andres Formation, Permian Basin, revealed by seismic characterization. Journal of Applied Geophysics75, 379–389.
    [Google Scholar]
  14. DurhamL.2009. Pre‐salt has Brazil in salsa mood. AAPG Explorer30, 4–8.
    [Google Scholar]
  15. FernandesM.A.B., SantiagoM.M.F.S., GomesD.F., Mendes FilhoJ., FrischkornH. and LimaJ.O.G.2005. A origem dos cloretos nas águas subterrâneas na Chapada do Apodi, Ceará. Águas Subterrâneas19(1), 25–34. In Portuguese.
    [Google Scholar]
  16. FordD.C. and WilliamsP.W.2007. Karst Hydrogeology and Geomorphology, pp. 562. Wiley, Chichester, U.K.
    [Google Scholar]
  17. ForteE., PipanM., CasabiancaD., Di Cuia, R. and RivaA.2012. Imaging and characterization of a carbonate hydrocarbon reservoir analogue using GPR attributes. Journal of Applied Geophysics81, 76–87.
    [Google Scholar]
  18. GoodmanD.GPR‐Slice Version 7. Program for Creating 2D/3D Subsurface Images From Raw Ground‐Penetrating Radar (GPR) Data Software Manual, pp. 367. Woodland Hills, USA.
    [Google Scholar]
  19. GrasmueckM., ViggianoD., SmithL. and NyahayR.2005. 3‐D vision ground penetrating radar (GPR): reservoir anatomy beyond the outcrop surface. Abstracts of the AAPG Annual Meeting, June 19–22, 2005, Calgary, Alberta, Canada.
    [Google Scholar]
  20. GrasmueckM. and WegerR.2002. 3D GPR reveals complex internal structure of Pleistocene oolitic Sandbar. The Leading Edge7, 634–639.
    [Google Scholar]
  21. JesusT.E.S., ReisJrJ.A., De CastroD.L. and Lima FilhoF.P.2012. Imageamento digital de paleocavernas colapsadas com ground penetrating radar. Serie Cientifica12, 71–84. In Portuguese.
    [Google Scholar]
  22. KeransC.1988. Karst‐controlled reservoir heterogeneity in Ellenburger Group carbonates of west Texas. AAPG Bulletin72, 1160–1183.
    [Google Scholar]
  23. KlimchoukA.B.2007. Hypogene Speleogenesis: Hydrogeological and Morphogenetic Perspective. Special Paper no. 1, pp. 106. National Cave and Karst Research Institute, Carlsbad, NM, USA.
    [Google Scholar]
  24. KruseS., GrasmueckM., WeissM. and ViggianoD.A.2006. Sinkhole structure imaging in covered karst terrain. Geophysical Research Letters33(16), L16405.1–L16405.6.
    [Google Scholar]
  25. LokeM.H.2002. 2003. RES2DINV. Rapid 2D resistivity and IP inversion using least squares method. Geotomo Software, Malaysia.
    [Google Scholar]
  26. LoucksR.G.1999. Paleocave carbonate reservoirs: origins, burial‐depth modifications, spatial complexity, and reservoir implication. AAPG Bulletin83, 1795–1834.
    [Google Scholar]
  27. LoucksR.G.2001. Modern analogs for paleocave‐sediment fills and their importance in identifying paleocave reservoirs. Gulf Coast Association of Geological Societies Transactions46, 195–206.
    [Google Scholar]
  28. LoucksR.G. and AndersonJ.H.1985. Depositional facies, diagenetic terranes, and porosity development in Lower Ordovician Ellenburger Dolomite, Puckettt field, West Texas. In: Carbonate Petroleum Reservoirs, (eds P.O.Roehl and P.W.Choquette ), pp. 19–38. Springer‐Verlag
    [Google Scholar]
  29. LuciaF.J.1995. Lower Paleozoic cavern development, collapse, and dolomitization, Franklin Mountains, El Paso, Texas. In: Unconformities and Porosity in Carbonate Strata, (eds D.A.Budd , A.H.Saller and P.M.Harris ), pp. 279–300. AAPG Memoir 63.
    [Google Scholar]
  30. MatosR.M.D.1992. The northeast Brazilian rift system. Tectonics11(4), 766–791.
    [Google Scholar]
  31. McBrideJ.H., GuthrieW.S., FaustD.L. and NelsonS.T.2012. A structural study of thermal tufas using ground‐penetrating radar. Journal of Applied Geophysics81, 38–47
    [Google Scholar]
  32. McMechanG.A., LoucksR.G., ZengX. and MescherP.K.1998. Ground penetrating radar imaging of a collapsed paleocave system in the Ellenburger dolomite, central Texas. Journal of Applied Geophysics39, 1–10.
    [Google Scholar]
  33. McMechanG.A., LoucksR.G., MescherP.A. and ZengX.2002. Characterization of a coalesced, collapsed paleocave reservoir analog using GPR and well‐core data. Geophysics67, 1148–1158.
    [Google Scholar]
  34. McDonnellA., LoucksR.G. and DooleyT.2007. Quantifying the origin and geometry of circular sag structures in northern Fort Worth Basin, Texas: paleocave collapse, pull‐apart fault systems, or hydrothermal alteration? AAPG Bulletin4, 603–622.
    [Google Scholar]
  35. McClymontA.F., GreenA.G., StreichR., HorstmeyerH., TronickeJ., NobesD.C. et al. 2008. Visualization of active faults using geometric attributes of 3D GPR data: an example from the Alpine Fault Zone, New Zealand. Geophysics73(2), B11–B23.
    [Google Scholar]
  36. MillerC.R., JamesN.P. and BoneY.2012. Prolonged carbonate diagenesis under an evolving late cenozoic climate; Nullarbor Plain, southern Australia. Sedimentary Geology261–262, 33–49.
    [Google Scholar]
  37. Pessoa NetoO.C., SoaresU.M., SilvaJ.G.F., RoesnerE.H., FlorêncioC.P. and SouzaC.A.V.2007. Bacia Potiguar. Boletim de Geociências da Petrobras15(2), 357–369. In Portuguese.
    [Google Scholar]
  38. PipanM., ForteE., GuangyouF. and FinettiI.2003. High‐resolution GPR imaging and joint characterisation in limestones. Near Surface Geophysics1, 39–55.
    [Google Scholar]
  39. ReisJrJ.A., De CastroD.L., JesusT.E.S. and Lima FilhoF.P.2014. Characterization of collapsed paleocave systems using GPR attributes. Journal of Applied Geophysics103, 43–56.
    [Google Scholar]
  40. Reyes PerezY.A., Lima FilhoF.P., MenezesL., PorsaniJ.L., AppiC.J., AraujoV.D. et al. 2003. Caracterização da geometria de depósitos sedimentares da formação Açu na borda sudoeste da Bacia Potiguar, NE do Brasil. Revista de Geologia (Fortaleza)16(1), 19–34. In Portuguese.
    [Google Scholar]
  41. RothM.J.S., MackeyJ.R., MackeyC. and NyquistJ.E.2002. A case study of the reliability of multielectrode earth resistivity testing for geotechnical investigations in karst terrains. Engineering Geology65, 225–232.
    [Google Scholar]
  42. RothM.J.S. and NyquistJ.E.2003. Evaluation of multi‐electrode earth resistivity testing in karst. ASTM Geotechnical Testing Journal26, 167–178.
    [Google Scholar]
  43. SandmeierK.J.2012. ReflexW version 7. Program for the Processing of Seismic, Acoustic or Electromagnetic Reflection, Refraction and Transmission Data. User’s Manual, pp. 578. Karlsruhe, Germany,
    [Google Scholar]
  44. StevenH., LumenS., NareshK., AdrianoS. and SujateV.2010. Tupi’s conjugate: new pre‐salt plays in the Angolan offshore. AAPG Houston 2010, Houston, TX, abstracts.
    [Google Scholar]
  45. SchoorM.2002. Detection of sinkholes using 2D electrical resistivity imaging. Journal of Applied Geophysics50, 393–399.
    [Google Scholar]
  46. TakayamaP., MenezesP. and TravassosJ.2008. High‐Resolution 3D GPR imaging of carbonate analogue reservoirs. Proceedings of 33rd International Geological Congress, August 6–14, 2008, Oslo, pp. 234–237.
    [Google Scholar]
  47. WhiteW.B.2007. A brief history of karst hydrogeology: contributions of the NSS. Journal of Cave and Karst Studies69, 13–26.
    [Google Scholar]
  48. YangP., SunS., LiuY., LiH., DanG. and JiaH.2012. Origin and architecture of fractured‐cavernous carbonate reservoirs and their influences on seismic amplitudes. The Leading Edge31(2), 140–150.
    [Google Scholar]
  49. ZengH.L., LoucksR., JansonX., WangG.Z., XiaY.P., YuanB.H. et al. 2011. Three‐dimensional seismic geomorphology and analysis of the Ordovician Paleokarst drainage system in the Central Tabei Uplift, northern Tarim Basin, Western China. Bulletin American Association of Petroleum Geologists95, 2061–2083.
    [Google Scholar]
  50. ZhouW., BeckB.F. and AdamsA.L.2002. Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environmental Geology42, 922–928.
    [Google Scholar]
  51. ZhouW., BeckB.F. and StephensonJ.B.1999. Application of electrical resistivity tomography and natural‐potential technology to deliniate potential sinkhole collapse areas in a covered karst terrane. In: Hydrogeology and Engineering Geology of Sinkholes and Karst, (eds B.F.Beck , A.J.Pettit and J.G.Herring ), pp. 187–193. Balkema, Rotterdam.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2015013
Loading
/content/journals/10.3997/1873-0604.2015013
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error