1887
Volume 13 Number 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

An indirect electromagnetic geothermometer is used for deep temperature estimations in the Soultz‐sous‐Forêts geothermal area (France) using magnetotelluric sounding data. Validation of temperature assessment carried out by comparison of the forecast temperature profile with temperature log from the deepest borehole has resulted in the relative extrapolation accuracy of less than 2%. It is found that the resistivity’s uncertainty caused by magnetotelluric inversion errors and by possible effects of external factors very weakly affects the resulting temperature, with the latter being influenced mainly by the ratio between the borehole length and the extrapolation depth. The temperature cross‐section constructed up to the depth 5000 m manifests local temperature maxima at large depths beneath the wells GPK2 and RT1/RT3. The analysis of the temperature profile in GPK2 location beneath 5000 m indicates that its behaviour continues to be of the conductive type (as in the depth range of 3700 m–5000 m) up to the depth 6000 m, while manifesting convective type below this depth. Finally, application of the indirect electromagnetic geothermometer for the deep temperature forecasting in the Rittershoffen site enabled us to constrain the location for future drilling.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2015014
2015-01-01
2024-04-24
Loading full text...

Full text loading...

References

  1. AquilinaL., PauwelsH., GenterA. and FouillacC.1997. Water‐rock interaction processes in the Triassic sandstone and the granitic basement of the Rhine Graben: Geochemical investigation of a geothermal reservoir. Geochimica et Cosmochimica Acta61, 4281–4295.
    [Google Scholar]
  2. BjörnssonA.2008. Temperature of the Icelandic crust: inferred from electrical conductivity, temperature surface gradient, and maximum depth of earthquakes. Tectonophysics447, 136–141.
    [Google Scholar]
  3. CautruJ.P.1987. Coupe Géologique Passant par le Forage GPK1 Calée sur la Sismique Réflexion.BRGM, Orleans, France.
    [Google Scholar]
  4. ClauserC. and VillingerH.1990. Analysis of conductive and convective heat transfer in a sedimentary basin, demonstrated for the Rheingraben. Geophysical Journal International100, 393–414.
    [Google Scholar]
  5. CummingW. and MackieR.2010. Resistivity imaging of geothermal resources using 1D, 2D and 3D MT inversion and TDEM static shift correction illustrated by a Glass Mountain case history. World Geothermal Congress, Bali, Indonesia, Expanded Abstracts.
    [Google Scholar]
  6. DezayesC., GenterA. and HooijkaasG.2005. Deep‐seated geology and fracture system of the EGS Soultz reservoir (France) based on recent 5 km depth boreholes. World Geothermal Congress, Antalya, Turkey, Expanded Abstracts.
    [Google Scholar]
  7. FlóvenzO.G.1985. Application of subsurface temperature measurements in geothermal prospecting in Iceland. Journal of Geodynamics4, 331–340.
    [Google Scholar]
  8. FoulgerG.R.1995. The Hengill geothermal area, Iceland: variation of temperature gradients deduced from the maximum depth of seismogenesis. Journal of Volcanology and Geothermal Research65, 119–133.
    [Google Scholar]
  9. GeiermannJ.2009. 2‐D magnetotelluric sounding and modeling at the geothermal site Soultz‐sous‐Forêts. Ph.D. dissertation, Gutenberg Universitat, Mainz, Germany.
    [Google Scholar]
  10. GeiermannJ. and SchillE.2010. 2‐D Magnetotellurics at the geothermal site at Soultz‐sous‐Forêts. Comptes Rendus Geosience342(7–8), 587–599.
    [Google Scholar]
  11. GenterA.1989. Geothermie Roches Chaudes Seches: le granite de Soultz‐sous‐Forets (Bas Rhin, France). Fracturation naturelle, alterations hydrothermales et interaction eau – roche.Ph.D. thesis, Universite d’Orleans, Orleans, France.
    [Google Scholar]
  12. GenterA., FritschD., CuenotN., BaumgartnerJ. and GraffJ.‐J.2009. Overview of the current activities of the European EGS Soultz project: from exploration to electricity production. XXXIV Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, Expanded Abstracts.
    [Google Scholar]
  13. HaasJ.‐O. and HoffmannC.R.1929. Temperature gradient in Pechelbronn oil bearing region, Lower Alsace: its determination and relation to oil reserves. Bulletin of the American Association of Petroleum Geologists13(10), 1257–1273.
    [Google Scholar]
  14. HaenelR., LegrandR., BallingN., SaxovS., BramK., GableR. et al. 1979. Atlas of Subsurface Temperatures in the European Community.Th. Schafer Druckerei GmbH, Hannover, Germany.
    [Google Scholar]
  15. KohlT., BachlerD. and RybachL.2000. Steps towards a comprehensive thermo‐hydraulic analysis of the HDR test site Soultz‐sous‐Forêts. World Geothermal Congress, Kyushu‐Tohoku, Japan, Expanded Abstracts, 3459–3464.
    [Google Scholar]
  16. KohlT. and PribnowD.1999. Constraints for deep fluid circulation at the HDR site Soultz by new thermal data from 5 km depth. AGU Fall Meeting, San Francisco, CA, USA, Expanded Abstracts.
    [Google Scholar]
  17. Le CarlierC., RoyerJ.‐J. and FloresE.L.1994. Convective heat transfer at Soultz‐sous‐Forêts geothermal site: implications for oil potential. First Break12(11), 553–560.
    [Google Scholar]
  18. LedesertB., BergerG., MeunierA., GenterA. and BouchetA.1999. Diagenetic‐type reactions related to hydrothermal alteration in the Soultz‐sous‐Forêts granite, France. European Journal of Mineralogy11, 731–741.
    [Google Scholar]
  19. LedesertB., JoffreJ., AmblèsA., SardiniP., GenterA. and MeunierA.1996. Organic matter in the Soultz HDR granitic thermal exchanger (France): natural tracer of fluid circulations between the basement and its sedimentary cover. Journal of Volcanology and Geothermal Research70, 235–253.
    [Google Scholar]
  20. OllingerD., BaujardC., KohlT. and MoeckI.2010. 3‐D Temperature inversion derived from deep borehole data in the Northeastern German Basin. Geothermics39, 46–58.
    [Google Scholar]
  21. PauwelsH., FouillacC. and FouillacA.‐M.1993. Chemistry and isotopes of deep geothermal saline fluids in the Upper Rhine graben: origin of compounds and water‐rock interaction. Geochimica et Cosmochimica Acta57, 2737–2749.
    [Google Scholar]
  22. PribnowD. and ClauserC.1998. Heat and mass transport in the upper Rhine Graben: regional and local models for a hot‐dry‐rock system. Fourth International HDR Forum, Strasbourg, France.
    [Google Scholar]
  23. PribnowD., EngelkingU. and SchellschmidtR.1997. Temperature prediction for the HDR Project at Soutz‐sous‐Forêts. GGA Technical Report 115869, pp. 10.
    [Google Scholar]
  24. PribnowD. and HamzaV.2000. Enhanced geothermal systems: new perspectives for large scale exploitation of geothermal energy resources in South America. XXXI International Geological Congress, Rio‐de‐Janeiro, Brasil, Expanded Abstracts.
    [Google Scholar]
  25. PribnowD., JungR., WeidlerR., GenterA., BaumgartnerJ., BariaR. et al. 2001. Mining heat from granitic basement in Soultz, Part 1: performance. GEIE Technicak Report, Soultz‐sous‐Forêts, France, pp. 37.
    [Google Scholar]
  26. PribnowD. and SchellschmidtR.2000. Thermal tracking of upper crustal fluid flow in the Rhine graben. Geophysical Research Letters27(13), 1957–1960.
    [Google Scholar]
  27. RenardP. and CourriouxG.1994. Three‐dimensional geometric modelling of faulted domain: The Soultz horst example (Alsace, France). Computers and Geosciences20, 1379–1390.
    [Google Scholar]
  28. RodiW. and MackieR.2001. Nonlinear conjugate gradients algorithm for 2D magnetotelluric inversion. Geophysics66, 174–187.
    [Google Scholar]
  29. SanjuanB., MillotR., DezayesC. and BrachM.2010. Main characteristics of the deep geothermal brine (5 km) at Soultz‐sous‐Forêts (France) determined using geochemical and tracer test data. Geoscience342, 546–559.
    [Google Scholar]
  30. SchellschmidtR. and ClauserC.1996. The thermal regime of the Upper Rhine graben and the anomaly at Soultz. Zeitschrift für Angewandte Geologie42, 40–44.
    [Google Scholar]
  31. SchillE., GeiermannJ. and KümmritzJ.2010. 2‐D magnetotellurics and gravity at the geothermal site at Soultz‐sous‐Forêts. 2010 World Geothermal Congress, Bali, Indonesia, Expanded Abstracts.
    [Google Scholar]
  32. SchillE., KohlT., BaujardC. and WellmannJ.F.2009. Geothermische Ressourcen in Rheinland‐Pfalz: Bereiche Süd‐ und Vorderpfalz.Ministerium für Umwelt Forsten und Verbraucherschutz, Mainz, Germany pp. 55.
    [Google Scholar]
  33. SpichakV.V.2006. Estimating temperature distributions in geothermal areas using a neuronet approach. Geothermics35, 181–197.
    [Google Scholar]
  34. SpichakV.V.2007. Neural network reconstruction of macro‐parameters of 3‐D geoelectric structures. In: Electromagnetic Sounding of the Earth’s Interior, (ed. V.V.Spichak ), pp. 223–260, Elsevier.
    [Google Scholar]
  35. SpichakV.V.2011. Application of ANN based techniques in EM induction studies. In: The Earth’s Magnetic Interior, Vol. 1, (eds E.Petrovský , E.Herrero‐Bervera , T.Harinarayana and D.Ivers ), pp. 19–30. IAGA Special Sopron Book Series, Springer.
    [Google Scholar]
  36. SpichakV., GeiermannJ., ZakharovaO., CalcagnoP., GenterA. and SchillE.2010. Deep temperature extrapolation in the Soultz‐sous‐Forêts geothermal area using magnetotelluric data. XXXV Workshop on Geothermal Reservoir Engineering, Stanford University, USA, Expanded Abstracts.
    [Google Scholar]
  37. SpichakV.V. and ManzellaA.2009. Electromagnetic sounding of geothermal zones. Journal of Applied Geophysics68(4), 459–478.
    [Google Scholar]
  38. SpichakV.V. and ZakharovaO.K.2009. The application of an indirect electromagnetic geothermometer to temperature extrapolation in depth. Geophysical Prospecting57, 653–664.
    [Google Scholar]
  39. SpichakV.V. and ZakharovaO.K.2012. The subsurface temperature assessment by means of an indirect electromagnetic geothermometer. Geophysics77(4), WB179–WB190.
    [Google Scholar]
  40. SpichakV.V. and ZakharovaO.K.2014. Gaseous vs aqueous fluids: Travale (Italy) case study using EM geothermometry. XXXIX Workshop on Geothermal Reservoir Engineering, Stanford University, USA, Expanded Abstracts.
    [Google Scholar]
  41. SpichakV.V. and SakharovaO.K.2015. Electromagnetic Geothermometry. Amsterdam‐Boston‐Heidelberg, Elsevier.
    [Google Scholar]
  42. SpichakV.V., ZakharovaO.K. and GoidinaA.G.2013. A new conceptual model of the Icelandic crust in the Hengill geothermal area based on the indirect electromagnetic geothermometry. Journal of Volcanology and Geothermal Research257, 99–112.
    [Google Scholar]
  43. SpichakV.V., ZakharovaO.K. and RybinA.K.2011. Methodology of the indirect temperature estimation basing on magnetotelluric data: northern Tien Shan case study. Journal of Applied Geophysics73, 164–173.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2015014
Loading
/content/journals/10.3997/1873-0604.2015014
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error