1887
Volume 5 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

As ground‐penetrating radar (GPR) technology improves, there is an increasing demand for more sophisticated and detailed interpretational tools. Numerical modelling has become one of the most popular advanced analysis methods and there is a wide range of electromagnetic modelling approaches available to the GPR user. The finite‐difference time‐domain (FDTD) technique is one of the most common, as it provides modellers with a robust, flexible, yet accurate, modelling scheme that is capable of simulating GPR wave propagation in complex, three‐dimensional, heterogeneous, lossy, subsurface environments. Through the use of a well‐constrained example, the realistic modelling of near‐surface GPR is evaluated including the practical limitations, computational procedures and application constraints of the FDTD method. The results show that, despite some obvious deficiencies, even a relatively basic FDTD model can provide important additional information for the advanced interpretation of observed GPR data.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2006014
2006-09-01
2024-04-26
Loading full text...

Full text loading...

References

  1. AbarbanelS. and GottliebD.1997. A mathematical analysis of the PML method. Journal of Computational Physics134, 357–363.
    [Google Scholar]
  2. AnnanA.P.1999. Ground penetrating radar: Workshop notes. June 1999 edition, Sensors and Software Inc.Ontario, Canada.
    [Google Scholar]
  3. BalanisC.A.1989. Advanced Engineering Electromagnetics.John Wiley & Sons, Inc.
    [Google Scholar]
  4. BalanisC.A.1997. Antenna Theory: Analysis and Design (2nd edn). John Wiley & Sons, Inc.
    [Google Scholar]
  5. BecacheE., PetropoulosP.G. and GedneyS.D.2004. On the long‐time behaviour of unsplit perfectly matched layers. IEEE Transactions on Antennas and Propagation52, 1335–1342.
    [Google Scholar]
  6. BerengerJ.P.1994. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics114, 185–200.
    [Google Scholar]
  7. BerengerJ.P.1996. Three‐dimensional perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics127, 363–379.
    [Google Scholar]
  8. BergmannT., BlanchJ.O., RobertssonJ.O.A. and HolligerK.1999. A simplifed Lax‐Wendroff correction for staggered‐grid FDTD modeling of electromagnetic wave propagation in frequency‐dependent media. Geophysics64, 1369–1377.
    [Google Scholar]
  9. BergmannT., RobertssonJ.O.A. and HolligerK.1998. Finite‐difference modelling of electromagnetic wave propagation in dispersive and attenuating media. Geophysics63, 856–867.
    [Google Scholar]
  10. BlanchJ.O., RobertssonJ.O.A. and SymesW.W.1994. Viscoelastic finite‐difference modelling. Geophysics59, 1444–1456.
    [Google Scholar]
  11. BourgeoisJ.M. and SmithG.S.1996. A fully three‐dimensional simulation of a ground‐penetrating radar: FDTD theory compared with experiment. IEEE Transactions on Geoscience and Remote Sensing34, 36–44.
    [Google Scholar]
  12. BurkeG.J. and PoggioA.J.1981. Numerical electromagnetic code (NEC) – Method of moments.Lawrence Livermore Laboratory, Technical Document NOSC TD 116.
    [Google Scholar]
  13. CarcioneJ.M.1996. Ground radar simulation for archaeological applications. Geophysical Prospecting44, 871–888.
    [Google Scholar]
  14. CarcioneJ.M. and CavalliniF.1995. On the acoustic‐electromagnetic analogy. Wave Motion21, 149–162.
    [Google Scholar]
  15. CarcioneJ.M., LenziG. and ValleS.1999. GPR modelling by the Fourier method: Improvement of the algorithm. Geophysical Prospecting47, 1015–1029.
    [Google Scholar]
  16. CassidyN.2001. The application of mathematical modelling in the interpretation of ground penetrating radar data.PhD thesis, Keele University.
    [Google Scholar]
  17. CassidyN.2004. Application of numerical modelling for the interpretation of near‐surface ground penetrating radar. In: Ground Penetrating Radar (ed. D.J.Daniels ), 2nd edn (Radar, Sonar, Navigation and Avionics Series 15), 67, pp. 47–59. Institute of Electrical Engineers, London.
    [Google Scholar]
  18. CassidyN.J. and TuckwellG.W.2002. Mathematical modelling of ground penetrating radar: parallel computing applications. Proceedings of the 9th International Conference on Ground‐Penetrating Radar GPR2002, USA,
    [Google Scholar]
  19. ColeK.S. and ColeR.H.1941. Dispersion and absorption in dielectrics. Journal of Chemical Physics9, pp. 341–351.
    [Google Scholar]
  20. ConyersL.B. and GoodmanD.1997. Ground‐Penetrating Radar: An Introduction for Archaeologists.AltaMira Press, Sage Publications, California, USA.
    [Google Scholar]
  21. DanielsD.J.2004. Ground Penetrating Radar, 2nd edn (Radar, Sonar, Navigation and Avionics Series 15), 67. Institute of Electrical Engineers, London.
    [Google Scholar]
  22. DogaruT. and CarinL.2001. Time‐domain sensing of targets buried under a Gaussian, exponential or fractal rough interface. IEEE Transactions on Geoscience and Remote Sensing39, 1807–1819.
    [Google Scholar]
  23. DondericiB. and TeixeiraF.L.2005. Improved FDTD subgridding algorithms via digital filtering and domain overriding. IEEE Transactions on Antennas and Propagation53, 2938–2951.
    [Google Scholar]
  24. EKKO_MODEL™
    EKKO_MODEL™ . 2005. GPR modelling software.Sensors and Software™, Canada.
    [Google Scholar]
  25. EngquistB. and MajdaA.1977. Absorbing boundary conditions for the numerical simulation of waves. Mathematics of Computation31(139), 629–651.
    [Google Scholar]
  26. FEMLAB™ v. 3.1
    FEMLAB™ v. 3.1 . 2005. Multi‐physics modelling.Comsol AB, Zurich.
    [Google Scholar]
  27. GiannopoulousA.2005a. Modelling ground penetrating radar by GprMax. Construction and Building Materials19, 775–762.
    [Google Scholar]
  28. GiannopolousA.2005b. GprMax2D: Electromagnetic simulator for ground probing radar. http://www.gprmax.org.
  29. GiannopoulousA. and DiamantiN.2003. Ground penetrating radar modelling of rough underground interfaces. 9th Meeting of Environmental and Engineering Geophysics, O‐043.
  30. GiannopoulousA. and DiamantiN.2005. Numerical modelling of ground penetrating radar response from rough subsurface interfaces. Geophysics (in press for late 2005).
    [Google Scholar]
  31. GivoliD. and CohenD.1995. Non‐reflecting boundary conditions based on Kirchoff‐type formulae. Journal of Computational Physics117, 102–113.
    [Google Scholar]
  32. GoodierA. and MathewsS.L.1998. A comparative study of experimental measurements and FDTD modelling of a large reinforced concrete beam specimen containing an induced honeycombed concrete defect. Proceedings of the 7th International Conference on Ground Penetrating Radar (GPR’98), USA.
    [Google Scholar]
  33. GoodmanD.J.1994. Ground‐penetrating radar simulation in engineering and archaeology. Geophysics59, 224–232.
    [Google Scholar]
  34. GroteM.J. and KellerJ.B.1996. Non‐reflecting boundary conditions for time‐dependent scattering. Journal of Computational Physics127, 52–65.
    [Google Scholar]
  35. GürelL. and OğuzU.2000. Three‐dimensional FDTD modeling of a ground‐penetrating radar. IEEE Transactions on Geoscience and Remote Sensing38, 1513–1521.
    [Google Scholar]
  36. HammonW.S., McMechanG.A. and ZengX.2000. Forensic GPR: finite‐difference simulations of responses from buried human remains. Journal of Applied Geophysics45, 171–186.
    [Google Scholar]
  37. HastingsF.D., SchneiderJ.B. and BroschatS.L.1995. A Monte‐Carlo FDTD technique for rough‐surface scattering. IEEE Transactions on Antennas and Propagation43, 1183–1191.
    [Google Scholar]
  38. HigdonR.L.1986. Absorbing boundary conditions for difference approximations to multi‐dimensional wave equation. Mathematics of Computation47(176), 437–459.
    [Google Scholar]
  39. HigdonR.L.1994. Radiation boundary conditions for dispersive waves. SIAM Journal of Numerical Analysis31, 64–100.
    [Google Scholar]
  40. HolligerK. and BergmannT.1998. Accurate and efficient modelling of ground‐penetrating radar antenna radiation. Geophysical Research Letters25, 3883–3886.
    [Google Scholar]
  41. HolligerK. and BergmannT.2002. Numerical modelling of borehole georadar data. Geophysics67, 1249–1257.
    [Google Scholar]
  42. HuangZ., DemarestK.R. and PlumbG.1999. An FDTD/MOM hybrid technique for modeling complex antennas in the presence of heterogeneous grounds. IEEE Transactions on Geoscience and Remote Sensing37, 2692–2699.
    [Google Scholar]
  43. KimS. and ChoiJ.H.2004. Optimal design of PML absorbing boundary condition for improving wide‐angle reflection performance. Electronics Letters40, 104–106.
    [Google Scholar]
  44. KosmasP. and RappaportC.2004. A simple absorbing boundary condition for FDTD modelling of lossy, dispersive media based on the one‐way wave equation. IEEE Transactions on Antennas and Propagation52, 2476–2479.
    [Google Scholar]
  45. KunzK.S. and LuebbersR J., 1993. The Finite Difference Time Domain Method for Electromagnetics.CRC Press, London.
    [Google Scholar]
  46. LampeB. and HolligerK.2003. Effects of fractal fluctuations in topographic relief, permittivity and conductivity on ground penetrating‐radar antenna radiation. Geophysics68, 1934–1944.
    [Google Scholar]
  47. LampeB. and HolligerK.2005. Resistively loaded antennas for ground‐penetrating radar antennas. Geophysics70, K23‐K32.
    [Google Scholar]
  48. LampeB., HolligerK. and GreenA.G.2005. A finite‐difference time‐domain simulation tool for ground‐penetrating radar antennas. Geophysics68, 971–987.
    [Google Scholar]
  49. LiC.L., LiuC.W. and ChenS.H.2003. Optimisation of a PML absorber's conductivity profile using FDTD. Microwave and Optical Technology Letters37, 380–383.
    [Google Scholar]
  50. LiaoZ.P., WongH.L., YangB.P. and YuanY.F.1984. A transmitting boundary for transient wave analyses. Scientia Sinica Series A27, 1063–1076.
    [Google Scholar]
  51. LiuQ.H. and FanG.1999. Simulations of GPR in dispersive media using a frequency‐dependent PSTD algorithm. IEEE Transactions on Geoscience and Remote Sensing37, 2317–2324.
    [Google Scholar]
  52. MakarovS.E.2002. Antenna and EM Modelling with MATLAB™.John Wiley & Sons, Inc.
    [Google Scholar]
  53. MATLAB™ v. 7
    MATLAB™ v. 7 . 2005. Technical computing language.The MathWorks, MA, USA.
    [Google Scholar]
  54. MooreJ. and PizerR.1984. Moment Methods in Electromagnetics.John Wiley & Sons, Inc.
    [Google Scholar]
  55. MeiK.K. and FengJ.1992. Superabsorption – A method to improve absorbing boundary conditions. IEEE Transactions on Antennas and Propagation40, 1001–1010.
    [Google Scholar]
  56. MontoyaT.P. and SmithG.S.1999. Land mine detection using a ground‐penetrating radar based on resistively loaded Vee dipoles. IEEE Transactions on Antennas and Propagation47, 1795–1806.
    [Google Scholar]
  57. MurG.1981. Absorbing boundary conditions for the finite‐difference approximation of the time‐domain electromagnetic‐field equations. IEEE Transactions on Electromagnetic Compatibility23, 377–382.
    [Google Scholar]
  58. NishiokaY., MaeshimaO., UnoT. and AdachiS.1999. FDTD analysis of resistor‐loaded antenna covered with ferrite‐coated conducting cavity for subsurface radar. IEEE Transactions on Antennas and Propagation47, 970–977.
    [Google Scholar]
  59. OğuzU. and GürelL.2003. Frequency responses of ground‐penetrating radars operating over highly lossy grounds. IEEE Transactions on Geoscience and Remote Sensing40, 1385–1394.
    [Google Scholar]
  60. OlhoeftG.R.2000. Maximizing the information return from ground penetrating radar. Journal of Applied Geophysics43, 175–187.
    [Google Scholar]
  61. OlhoeftG.R.2001. GRORADAR™, acquisition, processing, modeling and display of dispersive ground penetrating radar data, version 2001.01.
    [Google Scholar]
  62. PetropoulosP.G., ZhoaL. and CangellarisA.C.1998. A reflection's sponge layer absorbing boundary condition for the solution of Maxwell's equations with high‐order staggered finite difference schemes. Journal of Computational Physics139, 184–208.
    [Google Scholar]
  63. PrescottD.T. and ShuleyN.V.1997a. Reflection analysis of FDTD boundary conditions – Part I: Berenger's PML time‐space absorbing boundaries. IEEE Transactions on Microwave Theory and Techniques45, 1162–1170.
    [Google Scholar]
  64. PrescottD.T. and ShuleyN.V.1997b. Reflection analysis of FDTD boundary conditions – Part II: Berenger's PML absorbing layers. IEEE Transactions on Microwave Theory and Techniques45, 1171–1178.
    [Google Scholar]
  65. RadzeviciusS.J., ChenC., PetersL. and DanielsD.2003. Near‐field dipole radiation dynamics through FDTD modelling. Journal of Applied Geophysics52, 75–91.
    [Google Scholar]
  66. RadzeviciusS.J., DanielsJ.J. and ChenC.C.2000. GPR H‐plane antenna patterns for a horizontal dipole on a half‐space interface. Proceedings of the 8th International Conference on Ground Penetrating Radar (GPR 2000), Australia, pp. 712–717.
    [Google Scholar]
  67. RamadanO.2003. Digital filtering technique for the FDTD implementation of the anisotropic perfectly matched layer. IEEE Microwave and Wireless Components Letters13, 340–342.
    [Google Scholar]
  68. RamahiO.M.1997. Complementary boundary operators for wave propagation problems. Journal of Computational Physics133, 113–128.
    [Google Scholar]
  69. REFLEX‐WIN™
    REFLEX‐WIN™ . 2005. Program for the processing and interpretation of reflection and transmission data.Sandmeier Software, Germany.
    [Google Scholar]
  70. RejibaF., CamerlynckC. and MechlerP.2003. FDTD‐SUPML‐ADE simulation for ground‐penetrating radar modelling. Radio Science38(1), Art. No. 1005.
    [Google Scholar]
  71. RickardY.S. and GeorgievaN.K.2003. Problem independent enhancement of PML for the FDTD method. IEEE Transactions on Antennas and Propagation51, 3002–3006.
    [Google Scholar]
  72. RickerN.1940. The form and nature of seismic waves and the structure of seismograms. Geophysics5, 348–366.
    [Google Scholar]
  73. RobertsR.L. and DanielsJ.J.1997. Modelling near‐field GPR in three dimensions using the FDTD method. Geophysics62, 1114–1126.
    [Google Scholar]
  74. SaillardM. and SentenacA.2001. Rigorous solutions for electromagnetic scattering from rough surfaces. Waves In Random Media11(3), R103–R137.
    [Google Scholar]
  75. SaillardM. and SorianoG.2004. Fast numerical solution for scattering from rough surfaces with small slopes. IEEE Transactions on Antennas and Propagation52, 2799–2802.
    [Google Scholar]
  76. ShaariA., MillardS.G. and BungeyJ.H.2004. Modelling the propagation of a radar through concrete as a low‐pass filter. NDT&E International37, 237–242.
    [Google Scholar]
  77. ShlagerK.L., SmithG.S. and MaloneyJ.G.1994. Optimisation of bow‐tie antennas for pulse radiation. IEEE Transactions on Antennas and Propagation42, 975–982.
    [Google Scholar]
  78. SullivanD.M.1992. Frequency‐dependent FDTD method using Z‐transforms. IEEE Transactions on Antennas and Propagation40, 1223–1230.
    [Google Scholar]
  79. SullivanD.M.1996. Z‐transform theory and the FDTD method. IEEE Transactions on Antennas and Propagation44, 29–34.
    [Google Scholar]
  80. TafloveA.1995. Computational Electrodynamics – The Finite‐Difference Time‐Domain Method.Artech House, London.
    [Google Scholar]
  81. TafloveA.1998. Advances in Computational Electrodynamics – The Finite‐Difference Time‐Domain Method.Artech House, London.
    [Google Scholar]
  82. TeixeiraF.L. and ChewW.C.2000. Finite‐difference computation of transient electromagnetic waves for cylindrical geometries in complex media. IEEE Transactions on Geoscience and Remote Sensing38, 1530–1543.
    [Google Scholar]
  83. TerxenaF.L., ChewW.C., StrakaM., OnstagHoM.L. and WangT.1998. Finite‐difference time‐domain simulation of ground penetrating radar on dispersive, inhomogeneous and conductive soils. IEEE Transactions on Geoscience and Remote Sensing36, 1928–1937.
    [Google Scholar]
  84. UduwawalaD., NorgrenM., FuksP. and GunawardenaA.W.2004. A deep‐parametric study of resistor‐loaded bow‐tie antennas for ground‐penetrating radar applications using FDTD. IEEE Transactions on Geoscience and Remote Sensing42, 732–742.
    [Google Scholar]
  85. WangD. and McMechanG.A.2002. Finite‐difference modelling of borehole ground penetrating radar data. Journal of Applied Geophysics49, 111–127.
    [Google Scholar]
  86. WangT. and TrippA.C.1996. FDTD simulation of EM wave propagation in 3‐D media. Geophysics61, 110–120.
    [Google Scholar]
  87. WeedonW.H. and RappaportC.M.1997. A general method for FDTD modeling of wave propagation in arbitrary frequency‐dispersive media. IEEE Transactions on Antennas and Propagation45, 401–409.
    [Google Scholar]
  88. WittwerD.C. and ZiolkowskiR.W.2000. Maxwellian material‐based absorbing boundary conditions for lossy media in 3‐D. IEEE Transactions on Antennas and Propagation48, 200–213.
    [Google Scholar]
  89. YeeK.S.1966. Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media. IEEE Transactions Antennas and Propagation14, 302–307.
    [Google Scholar]
  90. YeeK.S. and ChenJ.S.1997. The finite‐difference time‐domain (FDTD) and the finite‐volume time‐domain (FVTD) methods in solving Maxwell's equations. IEEE Transactions on Antennas and Propagation 45, 354–363.
    [Google Scholar]
  91. YuT.B., ZhouB.H. and ChenB.2003. An unsplit formulation of the Berenger's PML absorbing boundary condition for FDTD meshes. IEEE Microwave and Wireless Components Letters13, 348–305.
    [Google Scholar]
  92. ZengX. and McMechanG.1997. GPR characterization of buried tanks and pipes. Geophysics62, 797–806.
    [Google Scholar]
  93. ZengX., McMechanG.A. and XuT.2000. Synthesis of amplitude‐versus‐offset variations in ground‐penetrating radar data. Geophysics65,113–125.
    [Google Scholar]
  94. ZhangG.F., TsangL. and PakK.1998. Angular correlation function and scattering coefficient of electromagnetic waves scattered by a buried object under a two‐dimensional rough surface. Journal of the Optical Society of America A‐Optics Image Science and Vision15(12), 2995–3002.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2006014
Loading
/content/journals/10.3997/1873-0604.2006014
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error