1887
Volume 5 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

After a broad introductory discussion on the mine action problem, this paper presents the status of close‐in mine detection technologies, including operational characteristics, without aiming at being exhaustive. Signal processing aspects and important lessons on data fusion are also discussed briefly. The detection is considered as a global process in which the outputs of the sensors, considered as skilled specialists, are integrated in a fusion operation. Next, the paper briefly addresses the problem of area reduction using remote sensing. In this case, information, collected with appropriate sensors and associated with context information from the field, is integrated in a geographical information system. This part of the paper is intentionally limited to a very short description of the SMART project funded by the European Commission, which uses multispectral and full polarimetric radar data in order to assist image analysts in their interpretation of mined scenes during an area reduction process.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2006017
2006-10-01
2024-03-29
Loading full text...

Full text loading...

References

  1. AcheroyM.1998. L’infrarouge thermique, principes et applications au déminage humanitaire. Revue HF (3), 13–24.
    [Google Scholar]
  2. Acheroy
    Acheroy . 2003. Mine Action Technologies: Problems and recommendations. Journal for Mine Action7(3).
    [Google Scholar]
  3. APOPO
    APOPO2006. http://www.apopo.org/, A Belgian research organization that was initiated in response to the global land‐mine problem.
    [Google Scholar]
  4. van den BoschI., LambotS. and Vander VorstA.2003. A unified method for modeling radar radiometer measurements. In: Proceedings of the EUDEM2 SCOT 2003 Conference, vol. 2, Brussels.
    [Google Scholar]
  5. van den BoschI., LambotS., LoperaO. and AcheroyM.2004a. Landmine signature extraction from GPR signal: modeling and measurements. In: Proceedings of the II International IEEE Andean Region Conference (ed. IEEE Columbia ), Bogota, Columbia.
    [Google Scholar]
  6. van den BoschI., LambotS. and AcheroyM.2004b. Extraction of landmine signature from ground penetrating radar signal. In: Proceedings of the International IARP Workshop on Robotics and Mechanical Assistance in Humanitarian Demining and Similar Risky Interventions (eds Y.Baudoin and P.Kopacak ), Brussels, Belgium.
    [Google Scholar]
  7. van den BoschI., LambotS. and Vander VorstA.2004c. A new approach for extracting land‐mine signature from ground‐penetrating radar signal. In: Proceedings of the 10th International Conference on Ground Penetrating Radar (eds E.Slob , A.Yarovow and J.Rhebergen ), pp. 287–290, TU Delft, The Netherlands.
    [Google Scholar]
  8. DanielsD.J.1999. An overview of RF sensors for mine detection: Part 2, Quadruple resonance. In: Mine ’99, EUROCONFERENCE on Sensor Systems and Signal Processing Techniques Applied to the Detection of Mines and Unexploded Ordnance, Florence, Italy.
    [Google Scholar]
  9. DanielsD.J.2004. Ground‐Penetrating Radar, 2nd edn. IEE‐UK.
    [Google Scholar]
  10. DruytsP., MerlatL. and AcheroyM.2000. Modeling considerations for imaging with a standard metal detector. In: Detection and Remediation Technologies for Mines and Minelike Targets V, vol. 4038, pp. 1431–1451. SPIE Press, Orlando, FL, USA.
    [Google Scholar]
  11. DruytsP., YvinecY. and AcheroyM.1998. Usefulness of semi‐automatic tools for airborne minefield detection. In: CLAWAR’98, pp. 241–248. BSMEE, Brussels, Belgium.
    [Google Scholar]
  12. EngelbeenA.1998. Nuclear quadrupole resonance mine detection. In: CLAWAR’98, pp. 249–253. BSMEE, Brussels, Belgium.
    [Google Scholar]
  13. EODIS
    EODIS2006. http://www.eodis.org/, SWEDEC EOD information system website.
    [Google Scholar]
  14. EUDEM‐2
    EUDEM‐22006. http://www.eudem.vub.ac.be/, Mine Action technology website.
    [Google Scholar]
  15. GICHD
    GICHD2006. http://www.gichd.ch/, Geneva International Centre on Humanitarian Demining website.
    [Google Scholar]
  16. HallikainenM.T., UlabyF.T., DobsonM.C., El‐RayesM.A. and WuL.K.1985. Microwave dielectric behavior of wet soil – part I: empirical models and experimental observations. IEEE Transactions on Geoscience and Remote Sensing23, 25–34.
    [Google Scholar]
  17. ICBL
    ICBL2005. Landmine Monitor – Towards a Mine‐Free World. Report 2005, Human Right Watch, USA.
    [Google Scholar]
  18. ITEP
    ITEP2006. http://www.itep.ws/, Test and Evaluation of Mine Action Technologies.
    [Google Scholar]
  19. JanssenY., de JongA., WinkelH. And PuttenF.1996. Detection of surface‐laid or buried mines with IR and CCD cameras, evaluation based on measurements. SPIE Proceedings2765, pp. 448–459. SPIE, Orlando, USA.
    [Google Scholar]
  20. JMU
    JMU2006. http://www.maic.jmu.edu/, Website of the Mine Action Information Center at the James Madison University, USA.
    [Google Scholar]
  21. van KempenL.1998a. Signal processing and pattern classification techniques for AP mine detection. In: CLAWAR’98, pp. 231–236, BSMEE, Brussels, Belgium.
    [Google Scholar]
  22. van KempenL., SahliH., NyssenE. and CornelisJ.1998b. Signal processing and pattern recognition methods for radar AP mine detection and identification. In: IEE 2nd International Conference on the Detection of Abandoned Land Mines, IEE, Edinburgh, UK.
    [Google Scholar]
  23. van KempenL., SahliH., BrooksJ. and CornelisJ.2000. New results on clutter reduction and parameter estimation for landmine detection using GPR. In: 8th International Conference on Ground Penetrating Radar, GPR 2000, Gold Coast, Australia.
    [Google Scholar]
  24. LacroixV., WolffE. and AcheroyM.2001. PARADIS: A prototype for assisting rational activities in humanitarian demining using images from satellites. Journal for Mine Action6(1).
    [Google Scholar]
  25. LambotS., SlobE.C., van den BoschI., StockbroeckxB., ScheersB. and VancloosterM.2003a. GPR design and modeling for identifying the shallow subsurface dielectric properties. Proceedings of the 2nd International Workshop on Advanced Ground Penetrating Radar, pp. 130–135, TU Delft, The Netherlands.
    [Google Scholar]
  26. LambotS., van den BoschI. and SlobE.C.2003b. Dielectric characterization of the shallow subsurface using ground penetrating radar for supporting humanitarian demining. Proceedings of the EUDEM2 SCOT 2003 Conference, vol. 2, pp. 525–541, Brussels, Belgium.
    [Google Scholar]
  27. LambotS., SlobE.C., van den BoschI., StockbroeckxB., ScheersB. and VancloosterM.2004a. Estimating soil electric properties from monostatic ground‐penetrating radar signal inversion in the frequency domain. Water Resources Research40(3).
    [Google Scholar]
  28. LambotS., SlobE.C., van den BoschI., StockbroeckxB. and VancloosterM.2004b. Modeling of GPR signal for accurate characterization of the subsurface dielectric properties. IEEE Transactions on Geoscience and Remote Sensing42, 2555–2568.
    [Google Scholar]
  29. LambotS., RhebergenJ., van den BoschI., SlobE.C. and VancloosterM.2004c. Measuring the soil water content profile of a sandy soil with an off‐ground monostatic ground penetrating radar. Vadose Zone Journal3, 1063–1071.
    [Google Scholar]
  30. LambotS., AntoineM., van den BoschI., SlobE.C. and VancloosterM.2004d. Electromagnetic inversion of GPR signals and subsequent hydrodynamic inversion to estimate effective vadose zone hydraulic properties. Vadose Zone Journal3, 1072–1081.
    [Google Scholar]
  31. LambotS., van den BoschI., VancloosterM. and SlobE.C.2004e. Modeling of GPR signal and inversion for identifying the sallow subsurface dielectric properties. Proceedings of the 10th International Conference on Ground Penetrating Radar (eds E.Slob , A.Yarovow and J.Rhebergen ), pp. 79–82, TU Delft, The Netherlands.
    [Google Scholar]
  32. LewisG.D. and JordanD.L.1996. Infrared polarisation signatures. Proceedings NATO‐IRIS41(5), 71–82.
    [Google Scholar]
  33. MilisavljevićN.1998a. Comparison of three methods for shape recognition in the case of mine detection. In: PRP6.
    [Google Scholar]
  34. Milisavljević: N.1998b. Decision fusion consideration. In: CLAWAR’98, pp. 219–224, BSMEE, Brussels, Belgium.
    [Google Scholar]
  35. Milisavljević: N.1999. Comparison of three methods for shape recognition in the case of mine detection. Pattern Recognition Letters20(11–13), 1079–1083.
    [Google Scholar]
  36. Milisavljević: N. and BlochI.2002. Fusion of anti‐personnel mine detection sensors in terms of belief functions, a two‐level approach. IEEE Transactions on Systems, Man and Cybernetics, Part B.
    [Google Scholar]
  37. Milisavljević: N. and BlochI.2004. Improving Mine Recognition through Processing and Dempster–Schafer Fusion of Multisensor Data. John Wiley & Sons, Inc.
    [Google Scholar]
  38. Milisavljević: N., BlochI. and AcheroyM.2000. A first step towards modeling and combining mine detection sensors within Dempster–Schafer framework. In: 2000 International Conference on Artificial Intelligence (IC‐AI’2000), Las Vegas, USA.
    [Google Scholar]
  39. Milisavljević: N., BlochI.van den BroekS. and AcheroyM.2002. Improving mine recognition through processing and Dempster–Schafer fusion of ground‐penetrating radar data. Pattern Recognition Letters36(5), 1233–1250.
    [Google Scholar]
  40. PeichlM., DillsS. and SüssH.2001. Advanced detection of landmines using multi‐spectral low‐frequency microwave radiometry techniques. In: Progress in Electromagnetics Research Symposium (PIERS), Osaka, Japan.
    [Google Scholar]
  41. PizuricaA.1998. Multiresolution techniques for image restoration in mine detection problems. In: CLAWAR’98, pp. 225–230, BSMEE, Brussels, Belgium.
    [Google Scholar]
  42. PizuricaA., PhilipsW., LemahieuI. and AcheroyM.1999. Speckle noise reduction in GPR images. In: International Symposium on Pattern Recognition “In Memoriam Prof Pierre Devijver”, Royal Military Academy (RMA), Brussels, Belgium.
    [Google Scholar]
  43. SchachneM., van KempenL., MilojevicD., SahliH., Van HamP., AcheroyM. and CornelisJ.1998. Mine detection by means of dynamic thermography: simulation and experiments. In: CLAWAR’98, pp. 255–259, BSMEE, Brussels, Belgium.
    [Google Scholar]
  44. SchaferG.1976. A Mathematical Theory of Evidence. Princeton University Press, Princeton, New Jersey, USA.
    [Google Scholar]
  45. ScheersB. and PietteM.1998a. Short pulse response of anti‐personnel landmines to UWB GPR signals. In: 7th International Conference on Ground‐Penetrating Radar, Kansas, USA.
    [Google Scholar]
  46. ScheersB., PietteM. and Vander VorstA.1998b. The detection AP mines using UWB GPR. In: IEE 2nd International Conference on the Detection of Abandoned Land Mines, IEE, Edinburgh, UK.
    [Google Scholar]
  47. ScheersB., PietteM., AcheroyM. and Vander VorstA.2000. A laboratory UWB GPR system for landmine detection. In: GPR2000, Sydney, Australia.
    [Google Scholar]
  48. SMART‐Consortium
    SMART‐Consortium2004, Smart final report, Technical report.
    [Google Scholar]
  49. UlabyF.T., MooreR.K. and FungA.K.1981. Microwave Remote Sensing: Active and Passive. Fundamentals and Radiometry, vol. 1. Artech House.
    [Google Scholar]
  50. VerlindeP., AcheroyM., NestiG. and SieberA.2001. First results of the joint multi‐sensor mine‐signatures measurement campaign (MsMs Project). In: Detection and Remediation Technologies for Mines and Minelike Targets VI, vol. 4394. SPIE Press, Orlando, FL, USA.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2006017
Loading
/content/journals/10.3997/1873-0604.2006017
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error