1887
Volume 3, Issue 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

(the NMR signal decay‐time constant) spectra are analysed for two purposes: (1) to determine the pore‐size distribution below the water table for lithological and flow parameter purposes and (2) to determine the moisture content as a function of water‐film thickness/water‐drop size to characterize water storage and fluxes in the unsaturated zone. Unsaturated‐zone hydraulic conductivity versus moisture‐content relationships are non‐linear and normally have a memory effect (hysteresis). Such relationships are dependent on the partitioning of moisture into pores of different sizes, which are wetted and drained in an order that depends on the soil composition and texture. Magnetic resonance sounding (MRS) multi‐exponential decay analysis may supply a unique insight in this component of water‐resources quantification through the differentiation of the moisture content into different film/droplet sizes. Field examples from two sites, one in The Netherlands and the other in Botswana, are shown, in which the free induction decay NMR signal is analysed in terms of three spectral components.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2005024
2005-08-01
2024-04-20
Loading full text...

Full text loading...

References

  1. BleaneyB.I. and BleaneyB.1976. Electricity and Magnetism. Oxford University Press.
    [Google Scholar]
  2. BoucherM., LegchenkoA. and BaltassatJ.M.2003. On the possibility of MRS monitoring of chalk and limestone aquifers.Proceedings of the 2nd International MRS Workshop, Orléans, France, pp. 17–20.
    [Google Scholar]
  3. BraunM. and YaramanciU.2003. Assessment of the conductivity influence on the complex surface‐NMR signal.Proceedings of the 2nd International MRS Workshop,Orléans, France, pp. 21–24.
    [Google Scholar]
  4. CoatesG.R., MarschallD., MardonD. and GalfordJ.1998. A new characterization of bulk‐volume irreducible using magnetic resonance.The Log Analyst, Jan‐Feb, 51–63.
    [Google Scholar]
  5. DunnK.‐J., BergmanD.J. and LatorracaG.A.2002. Nuclear Magnetic Resonance Petrophysical and Logging Applications.Pergamon Press, Inc.
    [Google Scholar]
  6. FetterC.W.1994. Applied Hydrogeology,3rd ed. Prentice–Hall, Inc.
    [Google Scholar]
  7. FreezeR.A. and CherryJ.A.1979. Groundwater.Prentice–Hall, Inc.
    [Google Scholar]
  8. GallegosD.P. and SmithD.M.1988. A NMR technique for the analysis of pore structure: determination of continuous pore‐size distributions.Journal of Colloid and Interface Science122, 143–153.
    [Google Scholar]
  9. HertrichM. and YaramanciU.2003. Surface‐NMR with separated loops ‐ investigations on spatial resolution.Proceedings of the 2nd International MRS Workshop,Orléans, France, pp. 41–44.
    [Google Scholar]
  10. HoreP.J.1995. Nuclear Magnetic Resonance.Oxford Chemistry Primers, OUP.
    [Google Scholar]
  11. HowardJ.T. and KenyonW.E.1992. Determination of pore‐size distribution in sedimentary rocks by proton nuclear magnetic resonance.Marine and Petroleum Geology9, 139–145.
    [Google Scholar]
  12. IRIS Instruments
    IRIS Instruments2001. NUMIS User’s Guide. Iris Instruments, Orléans.
    [Google Scholar]
  13. KenyonW.E.1997. Petrophysical principles of applications of NMR logging.The Log Analyst, March‐April, 21–43.
    [Google Scholar]
  14. KenyonW.E., HowardJ.J., SezginerA., StraleyC., MattesonA., HorkowitzK. and EhrlichR.1989. Pore‐size distribution and NMR in microporous cherty sandstones. 13th SPWLA Annual Logging Symposium, paper LL.
    [Google Scholar]
  15. KorringaJ., SeeversD.O. and TorreyH.C.1962. Theory of spin pumping and relaxation in systems with a low concentration of electron spin resonance centers.The Physical Review127.
    [Google Scholar]
  16. LegchenkoA.1998. Numis Interpretation System, User’s Guide. IRIS Instruments, Orléans.
    [Google Scholar]
  17. LegchenkoA., BaltassatJ.M., BeauceA. and BernardJ.2002. Nuclear magnetic resonance as a geophysical tool for hydrogeologists.Journal of Applied Geophysics50, 21–46.
    [Google Scholar]
  18. LegchenkoA. and VallaP.2002. A review of the basic principles for proton magnetic resonance sounding measurements.Journal of Applied Geophysics50, 3–19.
    [Google Scholar]
  19. LinnF., MasieM. and RanaA.J.2000. Hydrogeology, groundwater resources and salinification processes in the lower Okavango Delta, northwestern Botswana. In: Groundwater, Past Achievements and Future Challenges (eds Sililo et al.), pp. 549–554. Balkema, Rotterdam. ISBN 90 5809 159 7.
    [Google Scholar]
  20. LogachevA.A. and ZajarovV.P.1978. Exploracion Magnetica.Editorial Reverté S.A. Barcelona.
    [Google Scholar]
  21. LubczynskiM.W. and RoyJ.2003. Hydrogeological interpretation and potential of the new Magnetic Resonance Sounding (MRS) method.Journal of Hydrology183, 19–40.
    [Google Scholar]
  22. LubczynskiM. and RoyJ.2005. MRS contribution to hydrogeological system parameterization.Near Surface Geophysics3, 131–140.
    [Google Scholar]
  23. MaidmentD.R.1993. Handbook of Hydrology.McGraw‐Hill Book Co.
    [Google Scholar]
  24. MangisiN.2004. Hydrogeological verification of Magnetic Resonance Soundings, Maun area, Botswana.MSc thesis, ITC, Enschede, The Netherlands.
    [Google Scholar]
  25. MarsilyG.1986. Quantitative Hydrogeology.Academic Press, Inc.
    [Google Scholar]
  26. MohnkeO., BraunM. and YaramanciU.2001. Inversion of decay time spectra from Surface‐NMR data.Proceedings of 7th Meeting of Environmental and Engineering Geophysics,Birmingham, Great Britain.
    [Google Scholar]
  27. MohnkeO. and YaramanciU.2002. Smooth and block inversion of Surface‐NMR amplitudes and decay times using simulated annealing.Journal of Applied Geophysics50, 163–177.
    [Google Scholar]
  28. MohnkeO. and YaramanciU.2005. Forward modelling and inversion of MRS relaxation signals using multi‐exponential decomposition.Near Surface Geophysics3, 165–186.
    [Google Scholar]
  29. MohnkeO.YaramanciU. and LangeG.2002. Realization and assessment of T1 measurements with surface nuclear magnetic resonance. 8th EEGS‐ES meeting, Aveiro, Portugal.
    [Google Scholar]
  30. RoyJ.2000. MRS surveys under favorable conditions of S/N ratio.Proceedings of the 6th Meeting of EEGS‐ES,Bochum, Germany, P‐EM‐08.
    [Google Scholar]
  31. RoyJ.2002. Report on an MRS test in an area around Maun, Botswana ‐ October 2001;WRC‐ITC collaboration, unpublished report submitted to DWA.
    [Google Scholar]
  32. RoyJ. and LubczynskiM.W.2003a. The MRS technique and its use for ground water investigations.Hydrogeology Journal11, 455–465.
    [Google Scholar]
  33. RoyJ. and LubczynskiM.W.2003b. The case of an MRS‐elusive second aquifer.Proceedings of the 2nd International MRS Workshop,Orléans, France, pp. 105–108.
    [Google Scholar]
  34. SchirovM., LegchenkoA. and CreerG.1991. Anew direct non invasive groundwater detection technology for Australia.Exploration Geophysics11, 333–338.
    [Google Scholar]
  35. SchönJ.H.1998. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics,2nd ed. Pergamon Press, Inc.
    [Google Scholar]
  36. SemenovA.G.1987. “NMR Hydroscope” for water prospecting.Proceedings of Seminar on Geotomography, Indian Geophysical Union,Hyderabad, India, pp. 66–67.
    [Google Scholar]
  37. SlichterC.P.1996. Principles of Magnetic Resonance,3rd ed. Springer Verlag, Inc.
    [Google Scholar]
  38. StraleyC., RossiniD., VinegarH., TutunjianP. and MorrissC.1997. Core analysis by low field NMR.The Log Analyst, March‐April, 84–94.
    [Google Scholar]
  39. TindallJ.A. and KunkelJ.R.1999. Unsaturated Zone Hydrology for Scientists and Engineers.Prentice‐Hall, Inc.
    [Google Scholar]
  40. VarianR.H.1962. Ground liquid prospecting method and apparatus.US Patent #3019383.
    [Google Scholar]
  41. VouillamozJ.M.2003. La caractérisation des aquifères par une méthode non‐invasive: les sondages par résonance magnétique protonique.Thèse de L’Université de Paris XI, Spécialité Hydro‐Géophysique.
    [Google Scholar]
  42. WardS.H. and HohmannG.W.1988. Electromagnetic theory for geophysical applications. In: Electromagnetic Methods in Applied Geophysics ‐ Theory, Vol. 1 (ed. M.N.Nabighian). SEG.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2005024
Loading
/content/journals/10.3997/1873-0604.2005024
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error