1887
Volume 64, Issue 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Recently, new on‐shore acquisition designs have been presented with multi‐component sensors deployed in the shallow sub‐surface (20 m–60 m). Virtual source redatuming has been proposed for these data to compensate for surface statics and to enhance survey repeatability. In this paper, we investigate the feasibility of replacing the correlation‐based formalism that undergirds virtual source redatuming with multi‐dimensional deconvolution, offering various advantages such as the elimination of free‐surface multiples and the potential to improve virtual source repeatability. To allow for data‐driven calibration of the sensors and to improve robustness in cases with poor sensor spacing in the shallow sub‐surface (resulting in a relatively high wavenumber content), we propose a new workflow for this configuration. We assume a dense source sampling and target signals that arrive at near‐vertical propagation angles. First, the data are preconditioned by applying synthetic‐aperture‐source filters in the common receiver domain. Virtual source redatuming is carried out for the multi‐component recordings individually, followed by an intermediate deconvolution step. After this specific pre‐processing, we show that the downgoing and upgoing constituents of the wavefields can be separated without knowledge of the medium parameters, the source wavelet, or sensor characteristics. As a final step, free‐surface multiples can be eliminated by multi‐dimensional deconvolution of the upgoing fields with the downgoing fields.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12258
2015-12-15
2024-03-28
Loading full text...

Full text loading...

References

  1. AlexandrovD., BakulinA. and BurnstadR.2012. Virtual source redatuming of synthetic land data acquired with shallow buried receivers. 74th EAGE Conference and Exhibition, Extended Abstracts, P252.
  2. AmundsenL.2001. Elimination of free‐surface related multiples without need of the source wavelet, Geophysics66, 327–341.
    [Google Scholar]
  3. AmundsenL., IkelleT. and BergL.E.2001. Multidimensional signature deconvolution and free surface multiple elimination of marine multicomponent ocean‐bottom seismic data, Geophysics66, 1594–1604.
    [Google Scholar]
  4. BakulinA.V., BurnstadR.M., JervisM.A. and KelamisP.G.2012. The feasibility of permanent land seismic monitoring with buried geophones and hydrophones. 74th EAGE Conference and Exhibition, Extended Abstracts, X038.
  5. BakulinA. and CalvertR.2006. The virtual source method: Theory and case study. Geophysics71, SI139–SI150.
    [Google Scholar]
  6. BakulinA., MateevaA., MehtaK., JorgensenP., FerrandisJ., Sinha HerholdI. et al. 2007. Virtual source applications to imaging and reservoir monitoring, The Leading Edge26, 732–740.
    [Google Scholar]
  7. BarrF.J.1997. Dual‐sensor OBC technology. The Leading Edge16, 45–51.
    [Google Scholar]
  8. BerronC., ForguesE., JervisM., BakulinA., and BurnstadR.2012. Buried sources and receivers in a karsted desert environment. 74th EAGE Conference and Exhibition, Extended Abstracts, X040.
  9. ByunJ., YuJ. and SeolS.J.2010. Crosswell monitoring using virtual sources and horizontal wells, Geophysics75, 37–43.
    [Google Scholar]
  10. ClaerboutJ.F.1971. Toward a unified theory of reflector mapping, Geophysics36, 467–481.
    [Google Scholar]
  11. DayA., KlüverT., SöllnerW., TabtiH., and CarlsonD.2013. Wavefield‐separation methods for dual‐sensor towed‐streamer data, Geophysics78, WA55–WA70.
    [Google Scholar]
  12. FanY., SniederR., SlobE., HunzikerJ., SingerJ., SheimanJ.et al. 2010. Synthetic aperture controlled source electromagnetics. Geophysical Research Letters37, L13305.
    [Google Scholar]
  13. FishmanL,1991. Exact and approximate solutions of the Helmholtz,Weyl composition equation in scalar wave propagation. Wave Motion14, 205–224.
    [Google Scholar]
  14. FishmanL., McCoyJ.J, and WalesS.C.1987. Factorization and path integration of the Helmholtz equation: Numerical algorithms. Journal of the Acoustical Society of America, 81, 1355–1376.
    [Google Scholar]
  15. FokkemaJ.T. and Van den BergP.M.1993. Seismic Applications of Acoustic Reciprocity, Elsevier Science Publishing Co.
    [Google Scholar]
  16. GrimbergenJ.L.T., DessingF.J. and WapenaarK.1998. Modal expansion of one‐way operators in laterally varying media. Geophysics63, 995–1005.
    [Google Scholar]
  17. GrobbeN., Van der NeutJ. and Almagro VidalC.2013. Flux‐normalized elastodynamic wavefield decomposition using only particle velocity recordings. 83rd Annual Meeting, SEG, Expanded Abstracts.
  18. HainesA.J. and De HoopM.V.1996. An invariant imbedding analysis of general wave scattering problems. Journal of Mathematical Physics37, 3854–3881.
    [Google Scholar]
  19. HanafyS.M. and SchusterG.T.2007. Target‐oriented interferometric tomography for GPR data. Geophysics72, J1–J6.
    [Google Scholar]
  20. HenleyD.C.2012. Interferometric application of static corrections. Geophysics77, Q1–Q13.
    [Google Scholar]
  21. HunzikerJ., SlobE., FanY., SniederR. and WapenaarK.2012. Two‐dimensional controlled source electromagnetic interferometry by multidimensional deconvolution: spatial sampling aspects. Geophysical Prospecting60, 974–994.
    [Google Scholar]
  22. KelamisP.G. and VerschuurD.J.2000. Surface‐related multiple elimination on land seismic data Strategies via case studies. Geophysics65, 719–734.
    [Google Scholar]
  23. KorneevV. and BakulinA.2006. On the fundamentals of the virtual source method. Geophysics71, A13–A17.
    [Google Scholar]
  24. KorneevV., BakulinA. and LopezJ.2008. Imaging and monitoring with virtual sources on a synthetic 3D data set from the Middle East. 78th SEG Annual Meeting, Expanded Abstracts, 3204–3208.
  25. LinT.T.Y. and HerrmannF.J.2013. Robust estimation of primaries by sparse inversion via one‐norm minimization, Geophysics78, R133–R150.
    [Google Scholar]
  26. MajdanskiM., KostovC., KraghE., MooreI., ThompsonM. and MispelJ.2011. Attenuation of free‐surface multiples by up/down deconvolution for marine towed‐streamer data, Geophysics76, V129–V138.
    [Google Scholar]
  27. MehtaK., BakulinA., SheimanJ., CalvertR. and SniederR.2007. Improving the virtual source method by wavefield separation. Geophysics72, V79–V86.
    [Google Scholar]
  28. MehtaK., KiyashchenkoD., JorgensenP., LopezJ., FerrandisJ. and CostelloM.2010. Virtual source method applied to crosswell and horizontal well geometries, The Leading Edge29, 712–723.
    [Google Scholar]
  29. MehtaK., SheimanJ.L., SniederR. and CalvertR.2008. Strenghtening the virtual‐source method for time‐lapse monitoring. Geophysics73, S73–S80.
    [Google Scholar]
  30. MuijsR., RobertssonJ.O.A. and HolligerK.2004. Data‐driven adaptive decomposition of multicomponent seabed seismic recordings. Geophysics69, 1329–1337.
    [Google Scholar]
  31. RobertssonJ.O.A., MooreI., VassalloM., ÖzdemirK., van ManenD.J. and ÖzbekA.2008. On the use of multicomponent streamer recordings for reconstruction of pressure wavefields in the crossline direction. Geophysics73, A45–A49.
    [Google Scholar]
  32. SchalkwijkK.M., WapenaarC.P.A. and VerschuurD.J.2003. Adaptive decomposition of multicomponent ocean‐bottom seismic data into downgoing and upgoing P‐ and S‐waves, Geophysics68, 1091–1102.
    [Google Scholar]
  33. SchusterG.T. and ZhouM.2006. A theoretical overview of model‐based and correlation‐based redatuming methods. Geophysics71, SI103–SI110.
    [Google Scholar]
  34. TatanovaM., MehtaK. and KashtanB.2011. Virtual refraction tomography: Application to realistic 3D model. 81st SEG Annual Meeting, Expanded Abstracts, 4239–4243.
  35. Van BorselenR.G., FokkemaJ.T. and Van Den BergP.M.1996. Removal of surface‐related wave phenomena‐The marine case. Geophysics61, 202–210.
    [Google Scholar]
  36. Van der NeutJ.2013. Downhole interferometric illumination diagnosis and balancing, Geophysical Prospecting61, 352–367.
    [Google Scholar]
  37. Van der NeutJ., BakulinA. and AlexandrovA.2013. Acoustic wavefield separation using horizontal receiver arrays deployed at multiple depths on land. 83rd Annual SEG Meeting, Expanded Abstracts.
  38. Van der NeutJ., FrijlinkM. and Van BorselenR.2012. Data macthing for surface‐related multiple attenuation by multidimensional deconvolution. Geophysical Journal International191, 743–750.
    [Google Scholar]
  39. Van der NeutJ. and HerrmannF.J.2013. Interferometric redatuming by sparse inversion. Geophysical Journal International191, 666–670.
    [Google Scholar]
  40. Van GroenestijnG.J.A. and VerschuurD.J.2009. Estimation of primaries and near‐offset reconstruction by sparse inversion: Marine data applications. Geophysics74, R119–R128.
    [Google Scholar]
  41. VerschuurD.J. and BerkhoutA.J.1997. Estimation of multiple scattering by iterative inversion, part II: Practical aspects and examples. Geophysics62, 1595–1611.
    [Google Scholar]
  42. VerschuurD.J., BerkhoutA.J. and WapenaarC.P.A.1992. Adaptive surface‐related multiple elimination. Geophysics57, 1166–1177.
    [Google Scholar]
  43. WangY., GrionS. and BaleR.2010. Up‐down deconvolution and subsurface structure: theory, limitations and examples. 80th Annual SEG Meeting, Expanded Abstracts, 1672–1676.
  44. WapenaarC.P.A. and GrimbergenJ.L.T.1996. Reciprocity theorems for one‐way wavefields. Geophysical Journal International127, 169–177.
    [Google Scholar]
  45. WapenaarK.1998. Reciprocity properties of one‐way propagators. Geophysics63, 1795–1798.
    [Google Scholar]
  46. WapenaarK.2006. Green's function retrieval by cross‐correlation in case of one‐sided illumination. Geophysical Research Letters33, L19304.
    [Google Scholar]
  47. WapenaarK., FokkemaJ. and SniederR.2005. Retrieving the Green's function in an open system by cross correlation: A comparison of approaches. Journal of the Acoustical Society of America118, 2783–2786.
    [Google Scholar]
  48. WapenaarK., Van der NeutJ., RuigrokE., DraganovD., HunzikerJ., SlobE.et al. 2011. Seismic interferometry by crosscorrelation and by multidimensional deconvolution: A systematic comparison, Geophysical Journal International185, 1335–1364.
    [Google Scholar]
  49. ZhouM., JianZ., YuJ. and SchusterG.T.2006. Comparison between interferometric migration and reduced‐time migration of common‐depth point data, Geophyscis71, SI189–SI196.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12258
Loading
/content/journals/10.1111/1365-2478.12258
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error