1887
Volume 13 Number 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

This paper deals with the use of three electromagnetic non‐destructive techniques to assess concrete conditions: electrical resistivity, capacimetry, and ground‐penetrating radar. It shows the potential of these methods to monitor the ingress of water and chlorides into concrete. The electromagnetic properties that are studied here are dielectric permittivity and electrical resistivity, both sensitive to volumetric water content and chloride content. Results are presented from an experimental study conducted on concrete slabs (and corresponding core cylinders) in a controlled laboratory environment. Then, the discussion is focused on the ability of three electromagnetic techniques to assess the depth of the ingress front of different salt solutions and to discern between the 3 NaCl concentrations (0, 15 and 30 g/L).

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2015016
2015-02-01
2024-04-25
Loading full text...

Full text loading...

References

  1. AFPC‐AFREM
    AFPC‐AFREM . 1997. Durabilité des Bétons: Méthodes recommandées pour la mesure des grandeurs associées à la durabilité. Laboratoire Matériaux et Durabilité des Constructions, INSA Génie Civil, Toulouse, France.
    [Google Scholar]
  2. ArconeS.1984. Field observations of electromagnetic pulse propagation in dielectric slabs. Geophysics49, 1763–1773.
    [Google Scholar]
  3. BarnesC.L., TrottierJ.F. and ForgeronD.2010. Improved concrete bridge deck evaluation using GPR by accounting for signal depthamplitude effects. NDT&E International41, 427–433.
    [Google Scholar]
  4. Baroghel‐BounyV.et al.2007a. Concrete Design for a Given Structure Service Life, pp. 240. Association Française de Génie Civil (AFGC), Paris, April 2007.
    [Google Scholar]
  5. Baroghel‐BounyV., BelinP., MaultzschM. and HenryD.2007b. AgNO3 spray tests ‐ advantages, weaknesses, and various applications to quantify chloride ingress into concrete part 1: non‐steady‐state diffusion tests in laboratory and exposure to natural conditions. Materials and Structures40, 759–781.
    [Google Scholar]
  6. BenedettoA., ManacordaG., SimiA. and TostiF.2012. Novel perspectives in bridges inspection using GPR. Nondestructive Testing and Evaluation27(3), 239–251.
    [Google Scholar]
  7. De Groot‐HedlinC. and ConstableS.1990. Occam’s inversion to generate smooth, two‐dimensional models form magnetotelluric data. Geophysics55, 1613–1624.
    [Google Scholar]
  8. DérobertX., IaquintaJ., KlyszG. and BalayssacJ.P.2008. Use of capacitive and GPR techniques for non‐destructive evaluation of cover concrete. NDT&E International41(1), 44–52.
    [Google Scholar]
  9. DérobertX., VillainG., CortasR. and ChazelasJ.L.2009. EM characterization of hydraulic concretes in the GPR frequency band using a quadratic experimental design. NDT Conference on Civil Engineering, Nantes, France, June 30‐July 3, 2009, pp. 177–182.
  10. Du PlooyR., Palma LopesS., VillainG. and DérobertX.2012. Development of a multi‐ring resistivity cell and multi‐electrode resistivity probe for investigation of cover concrete condition. NDT&E International54, 27–36.
    [Google Scholar]
  11. Du PlooyR., VillainG., Palma LopesS., IhamoutenI., ThauvinB. and DérobertX.2015. Electromagnetic non‐destructive evaluation techniques for the monitoring of water and chloride ingress into concrete: a comparative study. Materials and Structures48, 369–386.
    [Google Scholar]
  12. FaresM., FargierY., VillainG., DérobertX., CoffecO. and Palma LopesS.2014. Détermination du profil de teneur en eau dans le béton d’enrobage par inversion de mesures de permittivité au moyen de sondes capacitives. Annales du Bâtiment et des Travaux Publics66(1–3), 17–22.
    [Google Scholar]
  13. FeliuS., AndradeC., GonzalezJ. and AlonsoC.1996. A new method for in‐situ measurement of electrical resistivity of reinforced concrete. Materials and Structures29, 362–365.
    [Google Scholar]
  14. HammondE. and RobsonT.1955. Comparison of electrical resistivity for various cements and concretes. The Engineer199, 78–80.
    [Google Scholar]
  15. HugenschmidtJ. and LoserR.2008. Detection of chlorides and moisture in concrete structures with GPR. Materials and Structures41, 785–792.
    [Google Scholar]
  16. IhamoutenA.2011. Caractérisation physique et hydrique de bétons d’ouvrage par propagation d’ondes électromagnetique. PhD dissertation, Université de Nantes, Ecole Doctorale Science et Technologies de I’information et Mathématiques.
    [Google Scholar]
  17. IhamoutenA., VillainG. and DérobertX.2013. Use of electromagnetic wave guided propagation in the GPR frequency range to characterize water transfer in concrete. NDT&E International, under review.
    [Google Scholar]
  18. KalogeropoulosA., Van der KrukJ., HugenschmidtJ., BikowskiJ. and BrühwilerE.2013. Full‐waveform GPR inversion to assess chloride gradients in concrete. NDT&E International57, 74–84.
    [Google Scholar]
  19. KroppJ. and AlexanderM.2007. Non‐destructive methods to measure ion migration. In: RILEM Report 040 Non‐Destructive Evaluation of the Penetrability and Thickness of Concrete Cover, RILEM TC 189‐NEC: State of the Art Report, pp. 13–34.
    [Google Scholar]
  20. LaurensS., BalayssacJ., RhaziJ. and ArliguieG.2002. Influence of concrete relative humidity on the amplitude of Ground‐Penetrating radar (GPR) signal. Materials and Structures35, 198–203.
    [Google Scholar]
  21. LokeM.H. and BarkerR.D.1996. Rapid least‐squares inversion of apparent resistivity pseudosections by a quasi‐Newton method. Geophysical Prospecting44, 131–152.
    [Google Scholar]
  22. MarescotL., RigobertS., Palma LopesS., LagabrielleR. and ChapellierD.2006. A general approach for DC apparent resistivity evaluation on arbitrarily shaped 3D structures. Journal of Applied Geophysics60, 55–67.
    [Google Scholar]
  23. MonforeG.E.1968. The electrical resisitivity of concrete. Journal of the PCA Research and Development Laboratories10, 35–48.
    [Google Scholar]
  24. ØstvikJ.‐M., LarsenC.K., VenneslandØ., SellevoldE.J. and AndradeM.C.2006. Electrical resistivity of concrete – part I: frequency dependence at various moisture contents and temperatures. Second International Symposium on Advances in Concrete through Science and Engineering, Quebec City, Canada, September 11–13, 2006.
    [Google Scholar]
  25. RobertA.1998. Dielectric permittivity of concrete between 50 Mhz and 1 Ghz and GPR measurements for building materials evaluation. Journal of Applied Geophysics40, 89–94.
    [Google Scholar]
  26. TumidajskiP., SchumacherA., PerronS., GuP. and BeaudoinJ.1996. On the relationship between porosity and electrical resistivity in cementitious systems. Cement and Concrete Research26, 539–544.
    [Google Scholar]
  27. TuttiK.1982. Corrosion of Steel in Concrete, Research Report 4.82.Swedish Cement and Concrete Research Institute, Stockholm, Sweden.
    [Google Scholar]
  28. Van der KrukJ., ArconeS. and LiuL.2007. Fundamental and higher mode inversion of dispersed GPR waves propagating in an ice layer. IEEE Transactions on Geoscience and Remote Sensing45, 2483–2491.
    [Google Scholar]
  29. Van der KrukJ., JacobR. And VereeckenH.2010. Properties of precipitation‐induced multilayer surface waveguides derived from inversion of dispersive TE and TM GPR data. Geophysics75(4), WA263–WA273.
    [Google Scholar]
  30. Van der KrukJ., SteelmanC.M., EndresA.L. and Vereecken, H.2009. Dispersion inversion of electromagnetic pulse propagation within freezing and thawing waveguides. Geophysical Research Letters36(18), L18503.
    [Google Scholar]
  31. VillainG. and ThieryT.2006. Gammadensimetry: A method to determine drying and carbonation profiles in concrete. NDT & E International39, 328–337.
    [Google Scholar]
  32. VillainG., SbartaïZ., DérobertX., GarnierV. and BalayssacJ.‐P.2012. Durability diagnosis of a concrete structure in a tidal zone by combining NDT methods: laboratory tests and case study. Construction and Building Materials37, 893–903.
    [Google Scholar]
  33. VillainG., BalayssacJ.‐P., GarnierV., PiwakowskiP., SalinJ., FardeauV.et al.2014. Comparison of durability indicators obtained by non destructive testing methods to monitor the durability of concrete structures. 7th European Workshop on Structural Health Monitoring EWSHM 2014, Nantes, France, July 8–11 2014, pp. 8.
    [Google Scholar]
  34. WhitingD. and NagiM.2003. Electrical Resistivity of Concrete –Literature Review. PCA R&D Serial No. 2457. Portland Cement Association.
  35. WhittingtonH., McCarterJ. and FordeM.1981. The conduction of electricity through concrete. Magazine of Concrete Research33, 48–60.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2015016
Loading
/content/journals/10.3997/1873-0604.2015016
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error