1887
Volume 27, Issue 4
  • E-ISSN: 1365-2117
PDF

Abstract

Abstract

This article presents a new numerical inversion method to estimate progradation rates in ancient shallow‐marine clinoform sets, which is then used to refine the tectono‐stratigraphic and depositional model for the Upper Jurassic Sognefjord Formation reservoir in the super‐giant Troll Field, offshore Norway. The Sognefjord Formation is a 10–200‐m thick, coarse‐grained clastic wedge, that was deposited in . 6 Myr by a fully marine, westward‐prograding, subaqueous delta system sourced from the Norwegian mainland. The formation comprises four, 10–60‐m thick, westerly dipping, regressive clinoform sets, which are mapped for several tens of kilometres along strike. Near‐horizontal trajectories are observed in each clinoform set, and the sets are stacked vertically. Clinoform age and progradation rates are constrained by: (i) regionally correlatable bioevents, tied to seismically mapped clinoforms and clinoform set boundaries that intersect wells, (ii) exponential age–depth interpolations between bioevent‐dated surfaces and a distinctive foreset‐to‐bottomset facies transition within each well, and (iii) distances between wells along seismic transects that are oriented perpendicular to the clinoform strike and tied to well‐based stratigraphic correlations. Our results indicate a fall in progradation rate (from 170–500 to 10–65 km Myr−1) and net sediment flux (from 6–14 to ≤1 km2 Myr−1) westwards towards the basin, which is synchronous with an overall rise in sediment accumulation rate (from 7–16 to 26–102 m Myr−1). These variations are attributed to progradation of the subaqueous delta into progressively deeper waters, and a concomitant increase in the strength of alongshore currents that transported sediment out of the study area. Local spatial and temporal deviations from these overall trends are interpreted to reflect a subtle structural control on sedimentation. This method provides a tool to improve the predictive potential of sequence stratigraphic and clinoform trajectory analyses and offers a greater chronostratigraphic resolution than traditional approaches.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12081
2014-07-22
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bre/27/4/bre12081.html?itemId=/content/journals/10.1111/bre.12081&mimeType=html&fmt=ahah

References

  1. Alexander, C.R., DeMaster, D.J. & Nittrouer, C.A. (1991) Sediment accumulation in a modern epicontinental‐shelf setting: the Yellow Sea. Mar. Geol., 998, 51–72.
    [Google Scholar]
  2. Allen, P.H. & Allen, J.R. (2005) Chapter 9 – subsidence and thermal history. In: Basin Analysis, Principles and Applications, 2nd edn (Ed. by P.A.Allen & J.A.Allen ), pp. 349–395. Blackwell Publishing, printed and bound in Singapore.
    [Google Scholar]
  3. Athy, L.F. (1930) Density, porosity and compaction of sedimentary rocks. Bull. Am. Assoc. Pet. Geol., 14, 1–24.
    [Google Scholar]
  4. Badley, M.E., Price, J.D., Rambech Dahl, C. & Agdestein, T. (1988) The structural evolution of the northern Viking Graben and its bearing upon extensional models of graben formation. J. Geol. Soc. London, 145, 455–472.
    [Google Scholar]
  5. Baldwin, B. & Butler, C.O. (1985) Compaction curves. AAPG Bull., 69, 622–626.
    [Google Scholar]
  6. Burgess, P.M. & Hovius, N. (1998) Rates of delta progradation during highstands; consequences for timing of deposition in deep‐marine systems. J. Geol. Soc., 155, 217–222.
    [Google Scholar]
  7. Cant, D.J. (1991) Geometric modelling of facies migration: theoretical development of facies successions and local unconformities. Basin Res., 3, 51–62.
    [Google Scholar]
  8. Carvajal, C. & Steel, R.S. (2009) Shelf‐edge architecture and bypass of sand to deep water: influence of shelf‐edge processes, sea level and sediment supply. J. Sediment. Res., 79, 652–672.
    [Google Scholar]
  9. Carvajal, C., Steel, R. & Petter, A. (2009) Sediment supply: the main driver of shelf‐margin growth. Earth Sci. Rev., 96, 221–248.
    [Google Scholar]
  10. Cattaneo, A., Correggiari, A., Langone, L. & Trincardi, F. (2003) The late‐Holocene Gargano subaqueous delta, Adriatic Shelf: sediment pathways and supply fluctuations. Mar. Geol., 193, 61–91.
    [Google Scholar]
  11. Cattaneo, A., Trincardi, F., Asioli, A. & Correggiari, A. (2007) The western Adriatic shelf clinoform: energy‐limited bottomset. Cont. Shelf Res., 27, 506–525.
    [Google Scholar]
  12. Christiansson, P., Faleide, J.I. & Berge, A.M. (2000) Crustal structure in the northern North Sea: an integrated geophysical study. In: Dynamics of the Norwegian Margin (Ed. by A.Nøttvedt ), pp. 15–40. Geological Society, London.
    [Google Scholar]
  13. Correggiari, A., Cattaneo, A. & Trincardi, F. (2005) The modern Po Delta system: lobe switching and asymmetric prodelta growth. Mar. Geol., 222–223, 49–74.
    [Google Scholar]
  14. Coward, M.P., Dewey, J., Hempton, M. & Holroyd, J. (2003) Tectonic evolution of the North Sea. In: The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (Ed. by D.Evans , C.Graham , A.Armour & P.Bathurst ), pp. 2.1–2.19. Geological Society of London, London.
    [Google Scholar]
  15. Dreyer, T., Whitaker, M., Dexter, J., Flesche, H. & Larsen, E. (2005) From spit system to tide dominated delta: integrated reservoir model of the upper Jurassic Sognefjord Formation on the Troll West Field. In: Petroleum Geology of North‐West Europe and Global Perspectives, Proceedings of the 6th Petroleum Geology Conference (Ed. by A.G.Doré & B.Vining ), pp. 1–26. Geological Society of London, London.
    [Google Scholar]
  16. Færseth, R.B. (1996) Interaction of Permo‐Triassic and Jurassic fault‐blocks during the development of the northern North Sea. J. Geol. Soc. London, 153, 931–944.
    [Google Scholar]
  17. Færseth, R.B. & Ravnås, R. (1998) Evolution of the Oseberg Fault‐Block in the context of the northern North Sea structural framework. Mar. Pet. Geol., 15, 467–490.
    [Google Scholar]
  18. Fossen, H., Mangerud, G., Hesthammer, J., Bugge, T. & Gabrielsen, R.H. (1997) The Bjorøy Formation: a newly discovered occurrence of Jurassic sediments in the Bergen Arc System. Nor. Geol. Tidsskr., 77, 269–288.
    [Google Scholar]
  19. Fraser, S.I., Robinson, A.M., Johnson, H.D., Underhill, J.R., Kadolski, D.G.A., Connell, R., Johannessen, P. & Ravnås, R. (2003) Upper Jurassic. In: The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (Ed. by D.Evans , C.Graham , A.Armour & P.Bathurst ), pp. 157–189. Geological Society of London, London.
    [Google Scholar]
  20. Galloway, W.E. (1989) Genetic stratigraphic sequences in basin analysis 1: architecture and genesis of flooding‐surface bounded depositional units. AAPG Bull., 73, 125–142.
    [Google Scholar]
  21. Gradstein, F.G., Ogg, J.G. & Smith, A.G. (2004) A Geological Time Scale 2004. Cambridge University Press, Cambridge UK, pp. 1–599.
    [Google Scholar]
  22. Hampson, G.J. (2010) Sediment dispersal and quantitative stratigraphic architecture across an ancient shelf. Sedimentology, 57, 96–141.
    [Google Scholar]
  23. Hampson, G.J., Sixsmith, P.J., Kieft, R.L., Jackson, C.A.‐L. & Johnson, H.D. (2009) Quantitative analysis of net‐transgressive shoreline trajectories and stratigraphic architectures: mid‐to ‐late Jurassic of the North Sea Rift Basin. Basin Res., 21, 528–588.
    [Google Scholar]
  24. Haq, B.U., Hardenbol, J. & Vail, P.R. (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea‐level change. In: Sea‐Level Changes ‐An Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , C.G.St.C.Kendall , H.W.Posamentier , C.A.Ross & J.C.VanWagoner ) SEPM Spec. Publ., 42, 71–108.
    [Google Scholar]
  25. Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., de Graciansky, P.C. & Vail, P. (1998) Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (Ed. by P.C.Graciansky , J.Hardenbol , T.Jaquin & P.R.Vail ), SEPM Spec. Publ., 60, 3–13, charts 1‐8.
    [Google Scholar]
  26. Hayes, D.E. (1988) Age‐depth relationships and depth anomalies in the southeast Indian Ocean and south Atlantic Ocean. J. Geophys. Res., 93 (B4), 2937–2954.
    [Google Scholar]
  27. Hedberg, H.G. (1936) Gravitational compaction of clays and shales. Am. J. Sci., 31, 241–287.
    [Google Scholar]
  28. Helland‐Hansen, W. & Gjelberg, J.G. (1994) Conceptual basis and variability in sequence stratigraphy: a different perspective. Sed. Geol., 92, 31–52.
    [Google Scholar]
  29. Helland‐Hansen, W. & Hampson, G.J. (2009) Trajectory analysis: concepts and applications. Bas. Res., 21, 454–483.
    [Google Scholar]
  30. Helland‐Hansen, W. & Martinsen, O.J. (1996) Shoreline trajectories and sequences: description of variable depositional dip scenarios. J. Sed. Res., 66, 670–688.
    [Google Scholar]
  31. Hernández‐Molina, F.J., Somoza, L. & Lobo, F. (2000) Seismic stratigraphy of the Gulf of Cadiz Continental Shelf: a model for Late Quaternary very high‐resolution sequence stratigraphy and response to sea‐level fall. In: Sedimentary Responses to Forced Regression (Ed. by D.Hunt & R.L.Gawthorpe ) Geol. Soc. Lond. Spec. Publ., 172, 329–362.
    [Google Scholar]
  32. Holgate, N.E., Jackson, C.A.‐L., Hampson, G.J. & Dreyer, T. (2013) Sedimentology and sequence stratigraphy of the Middle‐Upper Jurassic Krossfjord and Fensfjord formations, Troll Field, northern North Sea. Pet. Geosci., 19, 237–258.
    [Google Scholar]
  33. Hori, K., Saito, Y., Zhao, Q., Cheng, X., Wang, P., Sato, Y. & Li, C. (2001) Sedimentary facies and Holocene progradation rates of the Cahngjiang (Yangtze) delta, China. Geomorphology, 41, 233–248.
    [Google Scholar]
  34. Howell, J.A., Skorstad, A., MacDonald, A.C., Fordham, A., Flint, S.S., Fjellvoll, B. & Manzocchi, T. (2008) Sedimentological parameterization of shallow‐marine reservoirs. Pet. Geosci., 14, 17–34.
    [Google Scholar]
  35. Johannessen, E.P. & Steel, R.J. (2005) Shelf‐margin clinoforms and prediction of deepwater sands. Basin Res., 15, 521–550.
    [Google Scholar]
  36. Kominz, M.A. (1984) Oceanic ridge volumes and sea level change: an error analysis. In: Interregional Unconformities and Hydrocarbon Accumulation (Ed. by J.Schlee ) Am. Assoc. Pet. Geol. Mem., 36, 109–127.
    [Google Scholar]
  37. Kuehl, S.A., Nittrouer, C.A. & DeMaster, D.J. (1986) Nature of sediment accumulation on the Amazon continental shelf. Continental Shelf Res., 6, 209–225.
    [Google Scholar]
  38. Langone, L., Asioli, A., Correggiari, A. & Trincardi, F. (1996) Age‐depth modelling through the late Quaternary deposits of the central Adriatic basin. Memorie Istituto Italiano di Idrobiologia, 55, 177–196.
    [Google Scholar]
  39. Liu, J.P., Li, A.C., Xu, K.H., Velozzi, D.M., Yang, Z.S., Milliman, J.D. & DeMaster, D.J. (2006) Sedimentary features of the Yangtze River‐derived along‐shelf clinoform deposit in the East China Sea. Cont. Shelf Res., 26, 2141–2156.
    [Google Scholar]
  40. Loutit, T.S., Hardenbol, J., Vail, P.R. & Baum, G.R. (1988) Condensed sections: the key to age determination and correlation of continental margin sequences. In: Sea‐Level Changes ‐an Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , C.G.St.C.Kendall , H.W.Posamentier , C.A.Ross & J.C.VanWagoner ) SEPM Spec. Publ., 42, 183–213.
    [Google Scholar]
  41. Michels, K.H., Kudrass, H.R., Hübscher, C., Suckow, A. & Wiedicke, M. (1998) The submarine delta of the Ganges‐Brahmaputra: cyclone‐dominated sedimentation patterns. Mar. Geol., 149, 133–154.
    [Google Scholar]
  42. Mitchum, R.J., Vail, P.R. & Thompson, S.III (1977) The depositional sequence as a basic unit for stratigraphic analysis. In: Seismic Stratigraphy – Applications to Hydrocarbon Exploration (Ed. by C.E.Payton ) AAPG Mem., 26, 53–62.
    [Google Scholar]
  43. Mortimer, E., Gupta, S. & Cowie, P. (2005) Clinoform nucleation and growth in coarse‐grained deltas, Loreto basin, Baja California Sur, Mexico: a response to episodic accelerations in fault displacement. Basin Res., 17, 337–359.
    [Google Scholar]
  44. Muto, T. (2001) Shoreline autoretreat substantiated in flume experiments. J. Sediment. Res., 77, 2–12.
    [Google Scholar]
  45. Muto, T. & Steel, R.J. (1992) Retreat of the front in a prograding delta. Geology, 20, 967–970.
    [Google Scholar]
  46. Muto, T., Steel., R.J. & Swenson, J.B. (2007) Autostratigraphy: a framework norm for genetic stratigraphy. J. Sed. Res., 77, 2–12.
    [Google Scholar]
  47. Nøttvedt, A., Gabrielsen, R.H. & Steel, R.J. (1995) Tectonostratigraphy and sedimentary architecture of rift basins, with reference to the northern North Sea. Mar. Pet. Geol., 12 (8), 881–901.
    [Google Scholar]
  48. Nøttvedt, A., Berge, A.M., Dawers, N.H., Færseth, R.B., Häger, K.O., Mangerud, G. & Puigdefabregas, C. (2000) Syn‐rift evolution and resulting play models in the Snorre‐H area, northern North Sea. In: Dynamics of the Norwegian Margin: Geological Society, Vol. 167 (Ed. by A.Nøttvedt , B.T., Larsen , Gabrielsen, R.H. , Olaussen, S. , Brekke, H. , Tørudbakken, B. , Birkeland, Ø. , Skogseid, J. , et al.), pp. 179–218. Special Publications, London.
    [Google Scholar]
  49. Ogg, J.G., Ogg, G. & Gradstein, F.M. (2008) The Concise Geologic Time Scale. Cambridge University Press, Cambridge, UK, pp. 177.
    [Google Scholar]
  50. Olariu, C. & Steel, R.J. (2009) Influence of point‐ source sediment‐ supply on modern shelf‐break morphology; implications for interpretation of ancient shelf margins. Basin Res., 21, 484–501.
    [Google Scholar]
  51. Partington, M.A., Copestake, P., Mitchener, B.C. & Underhill, J.R. (1993) Biostratigraphic calibration of genetic stratigraphic sequences of the Jurassic‐lowermost Cretaceous (Hettangian to Ryazanian) of the North Sea and adjacent areas. In: Petroleum Geology of North‐West Europe: Proceedings of the 4th Conference (Ed. by J.R.Parker ), pp. 347–370. Geological Society of London, London.
    [Google Scholar]
  52. Patruno, S., Hampson, G.J., Jackson, A.‐L.C. & Dreyer, T. (2015) Clinoform geometry, geomorphology, facies character and stratigraphic architecture of an ancient sand‐rich subaqueous delta: Upper Jurassic Sognefjord Formation, Troll Field, Offshore Norway. 62, 350–388.
  53. Petter, A.L., Steel, R.J., Mohrig, D., Kim, W. & Carvajal, C. (2013) Estimation of the paleoflux of terrestrial‐derived solids across ancient basin margins using the stratigraphic record. GSA Bull., 125 (3/4), 578–593.
    [Google Scholar]
  54. Pirmez, C., Pratson, L. & Steckler, M. (1998) Clinoform development by advection‐diffusion of suspended sediment: modeling and comparison to natural systems. J. Geophys. Res., 103 (24), 141–124, 157.
    [Google Scholar]
  55. Pitman, W.C. (1978) Relationship between eustasy and stratigraphic sequences of passive margins. Bull. Geol. Soc. Am., 89, 1389–1403.
    [Google Scholar]
  56. Plotnick, R.E. (1986) A fractal model for the distribution of stratigraphic hiatuses. J. Geol., 94, 885–890.
    [Google Scholar]
  57. Pomar, L., Obrador, A. & Westphal, H. (2002) Sub‐wave base cross‐bedded grainstones on a distally steepened carbonate ramp, Upper Miocene, Menorca, Spain. Sedimentology, 49, 139–169.
    [Google Scholar]
  58. Porębski, S.J., Steel, R.J. (2003) Shelf‐margin deltas: their stratigraphic significance and relation to deepwater sands. Earth‐Sci. Rev., 62, 283–326.
    [Google Scholar]
  59. Porębski, S.J. & Steel, R.J. (2006) Deltas and sea‐level change. J. Sediment. Res., 76, 390–403.
    [Google Scholar]
  60. Posamentier, H.W. & Vail, P.R. (1988) Eustatic controls on clastic deposition II – sequence and systems tract models. In: Sea‐Level Changes ‐An Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , C.G.St.C.Kendall , H.W.Posamentier , C.A.Ross & J.C.VanWagoner ) SEPM Spec. Publ., 42, 125–154.
    [Google Scholar]
  61. Poulsen, N.E. & Riding, J.B. (2003) The Jurassic dinoflagellate cyst zonation of Subboreal Northwest Europe. Geol. Sur. Denmark Greenland Bull., 1, 115–144.
    [Google Scholar]
  62. Prosser, S. (1993) Rift‐related linked depositional systems and their seismic expression. Geol. Soc. London Spec. Publ., 71, 35–66.
    [Google Scholar]
  63. Ravnås, R. & Bondevik, K. (1997) Architecture and controls on Bathonian‐Kimmeridgian shallow‐marine syn‐rift wedges of the Oseberg‐Brage area, northern North Sea. Basin Res., 9, 197–226.
    [Google Scholar]
  64. Ravnås, R., Nøttvedt, A., Steel, R.J. & Windelstad, J. (2000) Syn‐rift sedimentary architectures in the Northern North Sea. In: Dynamics of the Norwegian Margin, Vol. 167 (Ed. by A.Nøttvedt ), pp. 133–177. Geological Society of London, Special Publications, London.
    [Google Scholar]
  65. Rich, J.L. (1951) Three critical environments of deposition and criteria for recognition of rocks deposited in each of them. GSA Bull., 62, 1–20.
    [Google Scholar]
  66. Sadler, P.M. (1981) Sedimentation rates and the completeness of stratigraphic sections. J. Geol., 89, 569–584.
    [Google Scholar]
  67. Sadler, P.M. & Jerolmack, J. (2014) Scaling laws for aggradation, denudation and progradation rates: the case for time‐scale invariance at sediment sources and sinks. In: Strata and Time Probing the Gaps in Our Understanding, Vol. 404 (Ed. by D.G.Smith , R.J.Bailey , P.M.Bugess & A.J.Fraser ). Geological Society of London, Special Publications, London.
    [Google Scholar]
  68. Sclater, J.G. & Christie, P.A.F. (1980) Continental stretching: an explanation of the post‐mid‐Cretaceous subsidence of the Central North Sea Basin. J. Geophys. Res., 85 (B7), 3711–3739.
    [Google Scholar]
  69. Sørensen, J.C., Gregersen, U., Breiner, M. & Michelsen, O. (1997) High‐frequency sequence stratigraphy of Upper Cenozoic deposits in the central and southeastern North Sea areas. Mar. Pet. Geol., 14 (2), 99–123.
    [Google Scholar]
  70. Steckler, M.S. & Watts, A.B. (1978) Subsidence of the Atlantic‐type continental margin off New York. Earth Planet. Sci. Lett., 41, 1–13.
    [Google Scholar]
  71. Steckler, M.S., Mountain, G.S., Miller, K.G. & Christie‐Blick, N. (1999) Reconstruction of Tertiary progradation and clinoform development on the New Jersey Passive Margin by 2‐D backstripping. Mar. Geol., 154, 399–420.
    [Google Scholar]
  72. Steel, R.J. (1993) Triassic‐Jurassic megasequence stratigraphy in the Northern North Sea: rift to post‐rift evolution. In: Petroleum Geology of North‐West Europe: Proceedings of the 4th Conference (Ed. by J.R.Parker ), pp. 299–315. Geological Society of London, London.
    [Google Scholar]
  73. Steel, R.J. & Olsen, T. (2002) Clinoforms, clinoform trajectory and deepwater sands. In: Sequence Stratigraphic Models for Exploration and Production: Evolving Methodology, Emerging Models and Application Histories (Ed. by J.M.Armentrout & N.C.Rosen ) GCS‐SEPM Spec. Publ., GCS022, 367–381.
    [Google Scholar]
  74. Steel, R.J., Carvajal, C., Petter, A.L. & Uroza, C. (2008) Shelf and shelf‐margin growth in scenarios of rising and falling sea level. In: Recent Advances in Models of Siliciclastic Shallow‐Marine Stratigraphy (Ed. by G.J.Hampson , R.J.Steel , P.M.Burgess & R.W.Dalrymple ) SEPM Spec. Publ., 90, 47–71.
    [Google Scholar]
  75. Stewart, D.J., Schwander, M. & Bolle, L. (1995) Jurassic depositional systems of the Horda Platform, Norwegian North Sea: practical consequences of applying sequence stratigraphic models. In: Sequence Stratigraphy on the Northwest European Margin (Ed. by R.J.Steel , V., Felt , Johannessen, E.P. & Mathieu, C. ), pp. 291–323. Norwegian Petroleum Society Special Publication, 5, Elsevier, Amsterdam.
    [Google Scholar]
  76. Swenson, J.B., Paola, C., Pratson, L., Voller, V.R. & Murray, A.B. (2005) Fluvial and marine controls on combined subaerial and subaqueous delta progradation: morphodynamic modeling of compound‐clinoform development. J. Geophys. Res., 110 (F02013), 1–16.
    [Google Scholar]
  77. Vail, P.R., Audemard, F., Bowman, S.A., Eisner, P.N. & Perez‐Cruz, C. (1991) The stratigraphic signatures of tectonics, eustasy and sedimentology – an overview. In: Cycles and Events in Stratigraphy (Ed. by G.Einsele , W.Ricken & A.Seilacher ), pp. 617–659. Springer‐Verlag, Berlin.
    [Google Scholar]
  78. Van Wagoner, J.C., Mitchum, R.M., Campion, K.M. & Rahmanian, V.D. (1990) Siliciclastic Sequence stratigraphy in well logs, cores, and outcrops: concepts for high resolution correlation of time and facies. AAPG Meth. Explor. Ser., 7, 55.
    [Google Scholar]
  79. Vollset, J. & Doré, A.G. (1984) A revised Triassic and Jurassic lithostratigraphy nomenclature for the Norwegian North Sea, northern area. Norw. Petrol. Direct. Bull., 3, 1–53.
    [Google Scholar]
  80. Walsh, J.P., Nittrouer, C.A., Palinkas, C.M., Ogston, A.S., Sternberg, R.W. & Brunskill, G.J. (2004) Clinoform mechanics in the Gulf of Papua, New Guinea. Cont. Shelf Res., 24, 2487–2510.
    [Google Scholar]
  81. Watts, A.B. & Ryan, W.B.F. (1976) Flexure of the lithosphere and continental margin basins. Tectonophysics, 36, 25–44.
    [Google Scholar]
  82. Whipp, P.S., Jackson, C.A‐L., Gawthorpe, R.L., Dreyer, T. & Quinn, D. (2014) Normal fault array evolution above a reactivated rift fabric; a subsurface example from the northern Horda Platform fault array, Norwegian North Sea. Basin Res., doi: 10.1111/bre.12050
    [Google Scholar]
  83. Zanella, E. & Coward, M.P. (2003) Structural framework. In: The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (Ed. by D.Evans , C.Graham , A.Armour & P.Bathurst ), pp. 45–55. The Geological Society of London, London.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12081
Loading
/content/journals/10.1111/bre.12081
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error