1887
Volume 13 Number 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

In this study, 20 hours of ambient seismic noise recorded from a small‐scale inter‐station distance was used to obtain near‐surface shear wave velocity structures at a local test site in Tehran (Iran). High‐resolution group velocity dispersion curves using fundamental mode of surface waves were calculated for all possible combinations of station pairs at frequencies ranging from 1 Hz to 25 Hz. Unlike most previous studies regarding ambient seismic noise, which observe very little coherent noise at frequencies larger than 1 Hz, the empirical Green’s functions were extracted using a root‐mean‐square stacking method showing more coherent signals. Our results indicate that ambient seismic noise is a viable technique at a frequency range of 1 Hz–25 Hz even when different sensor types are present. One‐dimensional V and V models from the near surface were then assessed by inverting the calculated Rayleigh and Love waves’ dispersion measurements. We observed that the calculated shear wave velocity model agrees with the available downhole model and shows three distinct layers in the upper 25 m of the test site.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2015031
2015-04-01
2024-03-28
Loading full text...

Full text loading...

References

  1. AdamJ.M.‐C. and LebedevS.2012. Azimuthal anisotropy beneath southern Africa from very broadband surface‐wave dispersion measurements. Geophysical Journal International191, 155–174. doi:10.1111/j.1365‐246X.2012.05583.x.
    [Google Scholar]
  2. AkiK. and RichardsP.G.1980. Quantitative Seismology: Theory and Methods.W. H. Freeman: San Francisco, CA.
    [Google Scholar]
  3. BabuskaV. and CaraM.1991. Seismic Anisotropy in the Earth.Kluwer Academic Publishers.
    [Google Scholar]
  4. BensenG.D., RitzwollerM.H. and ShapiroN.M.2008. Broadband ambient noise surface wave tomography across the United States. Journal Geophysical Research113, B05306. doi:10.1029/2007JB005248.
    [Google Scholar]
  5. BensenG.D., RitzwollerM.H., BarminM.P., LevshinA.L., LinF., MoschettiM.P.et al.2007. Processing seismic ambient noise data to obtain reliable broad‐band surface wave dispersion measurements. Geophysical Journal International169, 1239–1260. doi: 10.1111/j.1365 246X.2007.03374.x.
    [Google Scholar]
  6. CampanellaR.G. and StewartW.P.1992. Seismic cone analysis using digital processing for dynamic site characterization. Canadian Geotechnical Journal29, 477–486.
    [Google Scholar]
  7. ChoK.H., HerrmannR.B., AmmonC.J. and LeeK.2007. Imaging the upper crust of the Korean Peninsula by surface‐wave tomography. Bulletin of the Seismological Society of America97, 198–207.
    [Google Scholar]
  8. CrampinS. and PeacockS.2008. A review of the current understanding of seismic shear‐wave splitting in the Earth’s crust and common fallacies in interpretation. Wave Motion45(6), 675–722. doi:10.1016/j. wavemoti.2008.01.003.
    [Google Scholar]
  9. DziewonskiA., BlochS. and LandismanM.1969. A technique for the analysis of transient seismic signals. Bulletin of the Seismological Society of America59, 427–444.
    [Google Scholar]
  10. GroosJ.C. and RitterJ.R.R.2009. Time domain classification and quantification of seismic noise in an urban environment. Geophysical Journal International179(2). doi:10.1111/j.1365 246X.2009.04343.x.
    [Google Scholar]
  11. HerrmannR.B.1973. Some aspects of band‐pass filtering of surface waves. Bulletin of the Seismological Society of America63, 663–671.
    [Google Scholar]
  12. HerrmannR.B. and AmmonC.J.2002. Computer Programs in Seismology.Saint Louis University.
    [Google Scholar]
  13. JafariM.K.2002. Seismic Geotechnical Microzonation of South‐East of Tehran.International Institute of Earthquake Engineering and Seismology: Tehran, Iran (in Farsi).
    [Google Scholar]
  14. KimD.‐S., BangE.‐S. and KimW.‐C.2004. Evaluation of various down‐hole data reduction methods for obtaining reliable VS profiles. Geotechnical Testing Journal27(6), GTJ11811. doi:10.1520/GTJ11811.
    [Google Scholar]
  15. LinF.‐C., MoschettiM.P. and RitzwollerM.H.2008. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysical Journal International173, 281–298.
    [Google Scholar]
  16. NunziataC., NiscoG.D. and PanzaG.F.2009. S‐waves profiles from noise cross correlation at small scale. Engineering Geology105, 161–170. doi:10.1016/j.enggeo.2009.01.005.
    [Google Scholar]
  17. PanzaG.F., AlvarezL., AoudiaA., AyadiA., BenhallouH., BenouarD.et al.2002. Realistic modeling of seismic input for megacities and large urban areas. UNESCO/IUGS/IGCP Project 414 Episodes25(3), 160–184.
    [Google Scholar]
  18. PedersenH.A., KrugerF. and the SVEKALAPKO Seismic Tomography Working Group. 2007. Influence of the seismic noise characteristics on noise correlations in the Baltic shield. Geophysical Journal International168, 197–210. doi: 10.1111/j.1365‐246X.2006.03177.x.
    [Google Scholar]
  19. PedramiM.1981. Pasadenian orogeny and geology of last 700,000 years of Iran. Geological Survey of Iran (in Persian), 273 pp.
    [Google Scholar]
  20. PicozziM., ParolaiS., BindiD. and StrolloA.2009. Characterization of shallow geology by high‐frequency seismic noise tomography. Geophysical Journal International176, 164–174. doi: 10.1111/j.1365246X.2008.03966.x.
    [Google Scholar]
  21. RiebenE.H.1955. The geology of the Tehran plain. American Journal of Science253, 617–639.
    [Google Scholar]
  22. SchubertG.2007. Treatise on Geophysics.Elsevier: Amsterdam and Boston.
    [Google Scholar]
  23. ShafieeA. and AzadiA.2007. Shear‐wave velocity characteristics of geological units throughout Tehran city, Iran. Journal of Asian Earth Science29, 105–115.
    [Google Scholar]
  24. ShapiroN.M. and CampilloM.2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters31, L07614. doi:10.1029/2004GL019491
    [Google Scholar]
  25. ShapiroN.M. and SinghS.K.1999. Short note: A systematic error in estimating surface‐wave group‐velocity dispersion curve and a procedure for its correlation. Bulletin of the Seismological Society of America89(4), 1138–1142.
    [Google Scholar]
  26. ShapiroN.M., CampilloM., StehlyL. and RitzwollerM.H.2005. High resolution surface‐wave tomography from ambient seismic noise. Science307, 1615–1618.
    [Google Scholar]
  27. SherringtonH.F., ZandtG. and FrederiksenA.2004. Crustal fabric in the Tibetan Plateau based on waveform inversions for seismic anisotropy parameters. Journal Geophysical Resources109, B02312. doi:10.1029/2002JB002345.
    [Google Scholar]
  28. ShirzadT. and ShomaliZ.H.2013. Shallow crustal structures of the Tehran basin in Iran resolved by ambient noise tomography. Geophysical Journal International196, 1162–1176. doi: 10.1093/gji/ggt449.
    [Google Scholar]
  29. ShirzadT. and ShomaliZ.H.2014. Shallow crustal radial anisotropy beneath the Tehran Basin of Iran from seismic ambient noise tomography. Physics of the Earth and Planetary Interiors231. doi: 10.1016/j.pepi.2014.04.001.
    [Google Scholar]
  30. ShirzadT., ShomaliZ.H. and RiahiM.‐A.2013. An application of ambient noise and earthquake tomography in the Rigan area, southeast of Iran.
    [Google Scholar]
  31. Seismological Research Letters84(6). doi:10.1785/0220130044.
    [Google Scholar]
  32. WesselP. and SmithW.H.F.1998. New, improved version of the Generic Mapping Tools released. Eos, Transactions, American Geophysical Union79.
    [Google Scholar]
  33. XiaJ., MillerR.D. and ParkC.B.1999. Estimation of near‐surface shear‐wave velocity by inversion of Rayleigh waves. Geophysics64(3), 691–700.
    [Google Scholar]
  34. YangY., RitzwollerM.H., LevshinA.L. and ShapiroN.M.2007. Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International168, 259–274.
    [Google Scholar]
  35. YinX., XiaJ., ShenC. and XuaH.2014. Comparative analysis on penetrating depth of high‐frequency Rayleigh and Love waves. Journal of Applied Geophysics111, 86–94.
    [Google Scholar]
  36. ZhouY., DahlenF.A. and NoletG.2004. Three‐dimensional sensitivity kernels for surface wave observables. Geophysical Journal International158, 142–168.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2015031
Loading
/content/journals/10.3997/1873-0604.2015031
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error