1887
Volume 27, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

The Ericson Formation was deposited in the distal foredeep of the Cordilleran foreland basin during Campanian time. Isopach data show that it records early dynamic subsidence and the onset of basin partitioning by Laramide uplifts. The Ericson Formation is well exposed around the Rock Springs uplift, a Laramide structural dome in southwestern Wyoming; the formation is thin, regionally extensive, and does not display the wedge‐shaped geometry typical of foredeep deposits. Sedimentation in this area was controlled both by activity in the thrust belt and by intraforeland tectonics. The Ericson Formation is ideally situated both spatially and temporally to study the transition from Sevier to Laramide (thin‐ to thick‐skinned) deformation which corresponded to the shift from flexural to dynamic subsidence and the demise of the Cretaceous foreland basin system. We establish the depositional age of the Ericson Formation as . 74 Ma through detrital zircon U–Pb analysis. Palaeocurrent data show a generally southeastward transport direction, but northward indicators near Flaming Gorge Reservoir suggest that the intraforeland Uinta uplift was rising and shedding sediment northward by late Campanian time. Petrographic data and detrital zircon U–Pb ages indicate that Ericson sediment was derived from erosion of Proterozoic quartzites and Palaeozoic and Mesozoic quartzose sandstones in the Sevier thrust belt to the west. The new data place temporal and geographic constraints on attempts to produce geodynamic models linking flat‐slab subduction of the oceanic Farallon plate to the onset of the Laramide orogenic event.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12085
2014-08-19
2024-04-19
Loading full text...

Full text loading...

References

  1. Allen, P.A. & Homewood, P. (1984) Evolution and mechanics of a Miocene tidal sandwave. Sedimentology, 31, 63–81.
    [Google Scholar]
  2. Allmendinger, R.W. (1992) Fold and Thrust Tectonics of the Western United States Exclusive of the Accreted Terranes. In: The Cordilleran orogen: Conterminous US: Geol. Soc. Am.3, 583–607.
    [Google Scholar]
  3. Armstrong, R.L. & Ward, P.L. (1993) Late Triassic to earliest Eocene magmatism in North American Cordillera: implications for the western interior basin. In: Evolution of the Western Interior basin (Ed. by W.G.E.Caldwell & E.G.Kauffman ) Geol. Assoc. Can. Spec. Pap.39, 49–72.
    [Google Scholar]
  4. Aschoff, J.L. & Steel, R.J. (2011) Anomalous clastic wedge development during the Sevier‐Laramide transition in the Cordilleran Foreland Basin, USA. Geol. Soc. Am. Bull., 123, 1822–1835.
    [Google Scholar]
  5. Ashley, G.M. (1990) Classification of large‐scale subaqueous bedforms: a new look at an old problem. J. Sediment. Petrol., 60, 160–172.
    [Google Scholar]
  6. Beaumont, C. (1981) Foreland basins. Geophys. J. Roy. Astron. Soc., 65, 291–329.
    [Google Scholar]
  7. Beck, R.A., Vondra, C.F., Filkins, J.E. & Olander, J.D. (1988) Syntectonic sedimentation and Laramide basement thrusting, Cordilleran foreland; timing of deformation. In: Interaction of the Rocky Mountain Foreland and the Cordilleran Thrust Belt: Geol. Soc. Amer. Mem. 171, 465–487.
    [Google Scholar]
  8. Bird, P. (1998) Kinematic history of the Laramide orogeny in latitudes 35–49 N, Western United States. Tectonics, 17, 780–801.
    [Google Scholar]
  9. Blum, M., Martin, J., Milliken, K. & Garvin, M. (2013) Paleovalley systems: insights from Quaternary analogs and experiments. Earth‐Sci. Rev., 116, 128–169.
    [Google Scholar]
  10. Bradley, M.D. (1995) Timing of Laramide rise of the Uinta Mountains, Utah and Colorado. Wyoming Geological Association, 1995 Field Conference Guidebook, pp. 31–43.
  11. Bradley, M.D. & Bruhn, R.L. (1988) Structural interactions between the Uinta arch and the overthrust belt, north‐central Utah: implications of strain trajectories and displacement modeling. Interaction of the Rocky Mountain foreland and the Cordilleran thrust belt. Geol. Soc. Amer. Mem., 171, 431–446.
    [Google Scholar]
  12. Bridge, J.S. & Leeder, M.R. (1979) A simulation model of alluvial stratigraphy. Sedimentology, 26, 617–644.
    [Google Scholar]
  13. Bridge, J.S. & Lunt, I.A. (2006) Depositional models in braided rivers. In: Braided Rivers: Process, Deposits, Ecology and Management (Ed. by G.H.Sambrook‐Smith , J.Best , C.S.Bristow & G.E.Petts ), Inter. Assoc. Sedimentologists Pub., 36, 11–50.
    [Google Scholar]
  14. Bristow, C.S. (1993) Sedimentary structures exposed in bar tops in the Brahmaputra River, Bangladesh. In: Braided Rivers (Ed. by J.B.Best & C.S.Bristow ), Geol. Soc. Pub. House Spec. Pub., 75, 277–289.
    [Google Scholar]
  15. Burchfiel, B.C., Cowan, D.S. & Davis, G.A., (1992) Tectonic overview of the Cordilleran orogen in the western United States. In: The Cordilleran Orogen: Conterminous US (Ed. by: B.C.Burchfiel , P.W.Lipman & M.L.Zoback ) Geol. Soc. Amer.407–480.
    [Google Scholar]
  16. Cant, D.J. & Walker, R.G. (1976) Development of a braided‐fluvial facies model for the Devonian Battery Point Sandstone, Quebec. Can. J. Earth Sci., 13, 102–119.
    [Google Scholar]
  17. Cant, D.J. & Walker, R.G. (1978) Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology, 25, 625–648.
    [Google Scholar]
  18. Cawood, P.A., Hawkesworth, C.J. & Dhuime, B. (2012) Detrital zircon record and tectonic setting. Geology, 40, 875–878.
    [Google Scholar]
  19. Coleman, J.M. (1969) Brahmaputra river: channel processes and sedimentation. Sed. Geol., 3(2), 129–239.
    [Google Scholar]
  20. Conaghan, P.J. & Jones, J.G. (1975) The Hawkesbury sandstone and the Brahmaputra: a depositional model for continental sheet sandstones. J. Geol. Soc. Australia, 22(3), 275–283.
    [Google Scholar]
  21. Coney, P.J. & Reynolds, S.J. (1977) Cordilleran benioff zones. Nature, 270, 403–406.
    [Google Scholar]
  22. Constenius, K.N. (1996) Late Paleogene extensional collapse of the Cordilleran foreland fold and thrust belt. Geol. Soc. Am. Bull., 108, 20–39.
    [Google Scholar]
  23. Crews, S.G. & Ethridge, F.G. (1993) Laramide tectonics and humid alluvial fan sedimentation, NE Uinta Uplift, Utah and Wyoming. J. Sediment. Res., 63, 420–436.
    [Google Scholar]
  24. Cross, T.A. (1986) Tectonic controls of foreland basin subsidence and Laramide style deformation, western United States. Spec. Publ. Int. Ass. Sediment., 8, 15–39.
    [Google Scholar]
  25. Cross, T.A. & Pilger, R.H.Jr (1978) Tectonic controls of Late Cretaceous sedimentation, western interior, USA. Nature, 274, 653–657.
    [Google Scholar]
  26. DeCelles, P.G. (1994) Late Cretaceous‐Palaeocene synorogenic sedimentation and kinematic history of the Sevier thrust belt, northeast Utah and southwest Wyoming. Geol. Soc. Am. Bull., 106, 32–56.
    [Google Scholar]
  27. DeCelles, P.G. (2004) Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western USA. Am. J. Sci., 304, 105–168.
    [Google Scholar]
  28. DeCelles, P.G. & Cavazza, W. (1999) A comparison of fluvial megafans in the Cordilleran (Upper Cretaceous) and modern Himalayan foreland basin systems. Geol. Soc. Am. Bull., 111, 1315–1334.
    [Google Scholar]
  29. DeCelles, P.G. & Hertel, F. (1989) Petrology of fluvial sands from the Amazonian foreland basin, Peru and Bolivia. Geol. Soc. Am. Bull., 101, 1552–1562.
    [Google Scholar]
  30. DeCelles, P.G., Langford, R.P. & Schwartz, R.K. (1983) Two new methods of palaeocurrent determination from trough cross‐stratification. J. Sed. Res., 53, 629–642.
    [Google Scholar]
  31. DeCelles, P.G., Gray, M.B., Ridgway, K.D., Cole, R.B., Srivastava, P., Pequera, N. & Pivnik, D.A. (1991) Kinematic history of a foreland uplift from Paleocene synorogenic conglomerate, Beartooth Range, Wyoming and Montana. Geol. Soc. Am. Bull., 103 (11), 1458–1475.
    [Google Scholar]
  32. Devlin, W.J., Rudolph, K.W., Shaw, C.A. & Ehman, K.D. (1993) The effect of tectonic and eustatic cycles on accommodation and sequence‐ stratigraphic framework in the Upper Cretaceous foreland basin of southwestern Wyoming. Int. Assoc. Sediment. Spec. Pub., 18, 501–520.
    [Google Scholar]
  33. Dickinson, W.R. (1985) Interpreting provenance relations from detrital modes of sandstones. In: Provenance of Arenites (Ed. by G.G.Zuffa ), pp. 333–361. Springer, the Netherlands.
    [Google Scholar]
  34. Dickinson, W.R. (2004) Evolution of the North American Cordillera. Annu. Rev. Earth Planet. Sci., 32, 13–45.
    [Google Scholar]
  35. Dickinson, W.R. & Gehrels, G.E. (2009a) U‐Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado Plateau: evidence for transcontinental dispersal and intraregional recycling of sediment. Geol. Soc. Am. Bull., 121, 408–433.
    [Google Scholar]
  36. Dickinson, W.R. & Gehrels, G.E. (2009b) Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Let., 288, 115–125.
    [Google Scholar]
  37. Dickinson, W.R. & Snyder, W.S. (1978) Plate tectonics of the Laramide orogeny. Geol. Soc. Am. Mem., 151, 355–366.
    [Google Scholar]
  38. Dickinson, W.R., Klute, M.A., Hayes, M.J., Janecke, S.U., Lundin, E.R., McKittrick, M.A. & Olivares, M.D. (1988) Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region. Geol. Soc. Am. Bull., 100, 1023–1039.
    [Google Scholar]
  39. Engebretson, D.C., Cox, A. & Thompson, G.A. (1984) Correlation of plate motions with continental tectonics: Laramide to Basin‐Range. Tectonics, 3, 115–119.
    [Google Scholar]
  40. Erslev, E.A. (1993) Thrusts, back‐thrusts, and detachment of Rocky Mountain foreland arches. Geol. Soc. Amer. Spec. Pap., 280, 339–358.
    [Google Scholar]
  41. Erslev, E.A. (2005) 2D Laramide geometries and kinematics of the Rocky Mountains, western USA. The Rocky Mountain Region: An Evolving Lithosphere Tectonics, Geochemistry, and Geophysics. American Geophysical Union Geophysical Monograph 154, 7–20.
    [Google Scholar]
  42. Erslev, E.A. & Koenig, N.V. (2009) Three‐dimensional kinematics of Laramide, basement‐involved Rocky Mountain deformation, USA: insights from minor faults and GIS‐enhanced structure maps. In: Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision. Geol. Soc. Amer. Mem. 204, 125–149.
    [Google Scholar]
  43. Fan, M., DeCelles, P.G., Gehrels, G.E., Dettman, D.L., Quade, J. & Peyton, S.L. (2011) Sedimentology, detrital zircon geochronology, and stable isotope geochemistry of the lower Eocene strata in the Wind River Basin, central Wyoming. Geol. Soc. Am. Bull., 123, 979–996.
    [Google Scholar]
  44. Finn, T.M. & Johnson, R.C. (2005) Subsurface Stratigraphic Cross Sections of Cretaceous and Lower Tertiary Rocks in the Southwestern Wyoming Province, Wyoming, Colorado, and Utah. In: Petroleum Systems and Geologic Assessment of Oil and Gas in the Southwestern Wyoming Province, Wyoming, Colorado, and Utah, USGS DSS‐69‐D.
  45. Garzanti, E., Doglioni, C., Vezzoli, G. & Ando, S. (2007) Orogenic belts and orogenic sediment provenance. J. Geol., 115, 315–334.
    [Google Scholar]
  46. Gaschnig, R.M., Vervoort, J.D., Lewis, R.S. & McClelland, W.C. (2009) Migrating magmatism in the northern US Cordillera: in situ U‐Pb geochronology of the Idaho batholith. Cont. Min. and Petr., 159, 863–883.
    [Google Scholar]
  47. Gehrels, G.E., (2000) Introduction to detrital zircon studies of Palaeozoic and Triassic strata in western Nevada and northern California. In: Palaeozoic and Triassic Palaeogeography and Tectonics of Western Nevada and Northern California (Ed. by M.J.Soreghan & G.E.Gehrels ) Geol. Soc. Am. Spec. Pap., 347, 1–17.
    [Google Scholar]
  48. Gehrels, G. (2011) Detrital zircon U‐Pb geochronology: current methods and new opportunities. In: Tectonics of Sedimentary Basins: Recent Advances (Ed. by C.Busby & A.Azor ). John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9781444347166.ch2.
    [Google Scholar]
  49. Gehrels, G., Valencia, V. & Pullen, A. (2006) Detrital zircon geochronology by laser‐ablation multicollector ICPMS at the Arizona LaserChron Center. Paleontol. Soc. Pap., 12, 67.
    [Google Scholar]
  50. Gehrels, G.E., Valencia, V. & Ruiz, J. (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochem. Geophys. Geosyst., 9, 3017.
    [Google Scholar]
  51. Gomez‐Veroiza, C.A. & Steel, R.J. (2010) Iles clastic wedge development and sediment partitioning within a 300‐km fluvial to marine Campanian transect (3 my), Western Interior seaway, southwestern Wyoming and northern Colorado. AAPG Bull., 94, 1349–1377.
    [Google Scholar]
  52. Gries, R. (1983) North‐south compression of Rocky Mountain foreland structures. In: Rocky Mountain Forelands and Uplifts (Ed. by J.D.Lowell ), pp. 9–32. Denver CO, Rocky Mountian Asoc. of Geologists.
    [Google Scholar]
  53. Gregson, J. & Erslev, E.A. (1997) Heterogeneous deformation in the Uinta Mountains, Colorado and Utah. In: Fractured Reservoirs: Characterization and Modelling (Ed. by. T.E.Hoak , A.L.Klawitter & P.K.Bloomquist ), pp. 137–154. Rocky Mountain Association of Geologists 1997 Guidebook, Denver, CO.
    [Google Scholar]
  54. Hagen, E.S., Shuster, M.W. & Furlong, K.P. (1985) Tectonic loading and subsidence of intermontane basins, Wyoming foreland province. Geology, 13, 585–588.
    [Google Scholar]
  55. Hall, M.K. & Chase, C.G. (1989) Uplift, unbuckling, and collapse: flexural history and isostasy of the wind river range and granite mountains, Wyoming. J. Geophys. Res., 94, 17581–17593.
    [Google Scholar]
  56. Heller, P.L., Angevine, C.H. & Winslow, N.S. (1988) Two‐phase stratigraphic model of foreland‐basin sequences. Geology, 16, 501–504.
    [Google Scholar]
  57. Henderson, L.J., Gordon, R.G. & Engebretson, D.C. (1984) Mesozoic aseismic ridges on the Farallon plate and southward migration of shallow subduction during the Laramide orogeny. Tectonics, 3, 121–132.
    [Google Scholar]
  58. Hoy, R.G. & Ridgway, K.D. (1997) Structural and sedimentological development of footwall growth synclines along an intraforeland uplift, east‐central Bighorn Mountains, Wyoming. Geol. Soc. Amer. Bull., 109, 915–935.
    [Google Scholar]
  59. Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D. & Sares, S.W. (1984) The effect of grain size on detrital modes: a test of the Gazzi‐Dickinson point‐counting method. J. Sed. Pet., 54, 103–116.
    [Google Scholar]
  60. Isby, J.S. & Picard, M.D. (1985) Depositional Setting of Upper Cretaceous–lower Tertiary Currant Creek Formation, North‐Central Utah, Utah Geological Association, Salt Lake City, UT, Publication 12. pp. 39–49.
    [Google Scholar]
  61. Johnson, P.L. & Andersen, D.W. (2009) Concurrent growth of uplifts with dissimilar orientations in the southern Green River Basin, Wyoming: implications for Paleocene‐Eocene patterns of foreland shortening. Rocky Mount. Geol., 44, 1–16.
    [Google Scholar]
  62. Jones, C.H., Farmer, G.L., Sageman, B. & Zhong, S. (2011) Hydrodynamic mechanism for the Laramide orogeny. Geosphere, 7, 183–201.
    [Google Scholar]
  63. Jopling, A.V. & Walker, R.G. (1968) Morphology and origin of ripple‐drift cross‐lamination, with examples from the Pleistocene of Massachusetts. J. Sed. Res., 38, 971–984.
    [Google Scholar]
  64. Jordan, T.E. (1981) Thrust loads and foreland basin evolution, Cretaceous, western United States. Am. Assoc. Pet. Geol., 65, 2506–2520.
    [Google Scholar]
  65. LaMaskin, T.A. (2012) Detrital zircon facies of Cordilleran terranes in the western North America. GSA Today, 22(3), 4–11.
    [Google Scholar]
  66. Lamerson, P.R. (1982) The Fossil Basin and its relationship to the Absaroka thrust system, Wyoming and Utah. Rocky Mountain Assoc. Geol: Geologic Studies Cordilleran Thrust Belt., 1, 279–340.
    [Google Scholar]
  67. Laskowski, A.K., DeCelles, P.G. & Gehrels, G.E. (2013) Detrital zircon geochronology of Cordilleran retroarc foreland basin strata, western North America. Tectonics, 32, 1027–1048.
    [Google Scholar]
  68. Liu, S.F., Nummedal, D., Yin, P.‐G. & Luo, H.‐J. (2005) Linkage of Sevier thrusting episodes and Late Cretaceous foreland basin megasequences across southern Wyoming (USA). Basin Res., 17, 487–506.
    [Google Scholar]
  69. Liu, L.F., Spasojevic, S. & Gurnis, M. (2008) Reconstruction Farallon plate subduction beneath North America back to the late Cretaceous. Science, 322, 934–938.
    [Google Scholar]
  70. Liu, L., Gurnis, M., Seton, M., Saleeby, J., Müller, R.D. & Jackson, J.M. (2010) The role of oceanic plateau subduction in the Laramide orogeny. Nat. Geosci., 3, 353–357.
    [Google Scholar]
  71. Liu, S.F., Nummedal, D. & Liu, L. (2011) Tracking the Farallon plate migration through the Late Cretaceous Western US, Interior Basins. Geology, 39, 555–558.
    [Google Scholar]
  72. Liviccari, R.F., Burke, K. & Sengor, A.M.C. (1981) Was the Laramide orogeny related to subduction of an oceanic plateau?Nature, 289, 276–278.
    [Google Scholar]
  73. Love, J.D. & Christiansen, A.C. (1985) Geologic map of Wyoming. US Geol. Surv., G95135.
    [Google Scholar]
  74. Makaske, B. (2001) Anastomosing rivers: a review of their classification, origin and sedimentary products. Earth‐Sci. Rev., 53, 149–196.
    [Google Scholar]
  75. Martinsen, O.J., Ryseth, A., Helland‐Hansen, W., Flesche, H., Torkildsen, G. & Idil, S. (1999) Stratigraphic base level and fluvial architecture: Ericson Sandstone (Campanian), Rock Springs uplift, SW Wyoming, USA. Sedimentology, 46, 235–263.
    [Google Scholar]
  76. Mederos, S., Tikoff, B. & Bankey, V. (2005) Geometry, timing, and continuity of the Rock Springs uplift, Wyoming, and Douglas Creek arch, Colorado: implications for uplift mechanisms in the Rocky Mountain foreland, USA. Rocky Mount. Geol., 40, 167–191.
    [Google Scholar]
  77. Miall, A.D. (1977) A review of the braided‐river depositional environment. Earth Sci. Rev., 13(1), 1–62.
    [Google Scholar]
  78. Miall, A.D. (1978) Lithofacies types and vertical profile models in braided river deposits: a summary. In: Fluvial Sedimentology (Ed. by MiallA.D. ) Mem. Can. Soc. Pet. Geol., 5, 597–604.
    [Google Scholar]
  79. Miall, A.D. (1985) Architectural‐element analysis: a new method of facies analysis applied to fluvial deposits. Earth Sci. Rev., 22, 261–308.
    [Google Scholar]
  80. Miall, A.D. (2006) The Geology of Fluvial Deposits. Springer Science, Berlin.
    [Google Scholar]
  81. Miall, A.D., Catuneanu, O., Vakarelov, B.K. & Post, R. (2008). The Western interior basin. In: Sedimentary Basins of the World (Ed. by A.D.Miall ) 329–362.
    [Google Scholar]
  82. Mitrovica, J.X., Beaumont, C. & Jarvis, G.T. (1989) Tilting of continental interiors by the dynamical effects of subduction. Tectonics, 8, 1079–1094.
    [Google Scholar]
  83. Painter, C.S. & Carrapa, B. (2013) Flexural versus dynamic processes of subsidence in the North American Cordillera foreland basin. Geophys. Res. Lett., 40, 4249–4253.
    [Google Scholar]
  84. Painter, C.S., York‐Sowecke, C.C. & Carrapa, B. (2013) Sequence stratigraphy of the Upper Cretaceous Sego Sandstone Member reveals spatio‐temporal changes in depositional processes, northwest Colorado, USA. J. Sed. Res., 83, 323–338.
    [Google Scholar]
  85. Roberts, L.N.R. & Kirschbaum, M.A. (1995) Paleogeography of the Late Cretaceous of the Western Interior of middle North America‐coal distribution and sediment accumulation. U.S. Geol. Surv. Prof. Pap., 1561, 65.
    [Google Scholar]
  86. Roehler, H.W. (1990) Stratigraphy of the Mesa Verde Group in the central and eastern Green River Basin, Wyoming, Colorado, and Utah. U.S. Geol. Surv. Prof. Pap., 1508, 52 pp.
    [Google Scholar]
  87. Roehler, H.W. (1993) Stratigraphy of the Upper Cretaceous Fox Hills sandstone and adjacent parts of the Lewis shale and lance formation, east flank of the Rock Springs Uplift, Southwest Wyoming. USGS Professional Paper 1532, 1–57.
  88. Royse, F.Jr., Warner, M.A. & Reese, D.L. (1975) Thrust belt structural geometry and related stratigraphic problems Wyoming‐Idaho‐northern Utah. In: Deep Drilling Frontiers of the Central Rocky Mountains (Ed. by D.W.Bolyard ) Rocky Mountain Assoc. Geol. 1975 Symp. 41–54.
    [Google Scholar]
  89. Rust, B.R. (1978) Depositional models for braided alluvium In: Fluvial Sedimentology (Ed. by A.D.Miall ) Mem. Can. Soc. Petrol. Geol.5, 605–625.
    [Google Scholar]
  90. Saleeby, J. (2003) Segmentation of the Laramide slab—Evidence from the southern Sierra Nevada region. Geol. Soc. Amer. Bull., 115, 655–668.
    [Google Scholar]
  91. Shanley, K.W., McCabe, P.J. & Hettinger, R.D. (1992) Tidal influence in Cretaceous fluvial strata from Utah, USA: a key to sequence stratigraphic interpretation. Sedimentology, 39, 905–930.
    [Google Scholar]
  92. Skelly, R.L., Bristow, C.S. & Ethridge, F.G. (2003) Architecture of channel‐belt deposits in an aggrading shallow sandbed braided river: the lower Niobrara River, northeast Nebraska. Sed. Geol., 158, 249–270.
    [Google Scholar]
  93. Smith, N.D., Cross, T.A., Dufficy, J.P. & Clough, S.R. (1989) Anatomy of an avulsion. Sedimentology, 36, 1–23.
    [Google Scholar]
  94. Spasojevic, S., Liu, L. & Gurnis, M. (2009) Adjoint models of mantle convection with seismic, plate motion, and stratigraphic constraints: North America since the Late Cretaceous. Geochem. Geophys. Geosyst., 10 (5), Q05W02.
    [Google Scholar]
  95. Steidtmann, J.R. & Middleton, L.T. (1991) Fault chronology and uplift history of the southern Wind River Range, Wyoming: Implications for Laramide and post‐Laramide deformation in the Rocky Mountain foreland. Geol. Soc. Am. Bull., 103, 472–485.
    [Google Scholar]
  96. Tikoff, B. & Maxson, J. (2001) Lithospheric buckling of the Laramide foreland during Late Cretaceous and Paleogene, western United States. Rocky Mount. Geol., 36, 13–35.
    [Google Scholar]
  97. Willis, B.J. & Gabel, S. (2001) Sharp‐based, tide‐dominated deltas of the Sego Sandstone, Book Cliffs, Utah, USA. Sedimentology, 48, 479–506.
    [Google Scholar]
  98. Willis, B.J. & Gabel, S.L. (2003) Formation of deep incisions into tide‐dominated river deltas: implications for the stratigraphy of the Sego Sandstone, Book Cliffs, Utah, USA. J. Sed. Res., 73, 246–263.
    [Google Scholar]
  99. Yin, A. & Ingersol, R.V. (1997) A model for evolution of Laramide axial basins in the Southern Rocky Mountains, USA. Int. Geol. Rev., 39, 1113–1123.
    [Google Scholar]
  100. Yonkee, W.A., Dehler, C.D., Link, P.K., Balgord, E.A., Keeley, J.A., Hayes, D.S., Wells, M.L., Fanning, C.M. & Johnson, S.M. (2014) Tectono‐stratigraphic framework of Neoproterozoic to Cambrian strata, west‐central U.S.: Protracted rifting, glaciation, and evolution of the North American Cordilleran margin. Earth Sci. Rev., 136, 59–95.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12085
Loading
/content/journals/10.1111/bre.12085
Loading

Data & Media loading...

Supplements

. Measured Section: All 35 sections measured during the field work for this study.

PDF

. This excel file contains all data from analyses of detrital zircons (sheet 1) and all point count data from thin sections (sheet 2).

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error