1887
Volume 27, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Tectonic influence on deltas has long been recognized for its importance in morphodynamic and stratigraphic development. Here, we explore the control of lateral tectonic tilting on a prograding fluviodeltaic system through six laboratory experiments with a range of tilting rates. Basement tilting was applied along an axis that bisects the centre of the experimental delta, which forced uplift on one half of the basin and subsidence on the opposite half. In the experiments with lower tilting rates, the delta advanced faster in the direction of uplift due to the decline in relative base level. This slow uplift created truncated stratigraphic intervals that were dominated by active channel cut and fill. On the opposite side where subsidence occurred, the shoreline still prograded, but with decreased rates, while the delta topset was deposited thicker, alternating packages of fine and coarse sediments. The fluvial system was active uniformly across the delta in these slow tilting runs and produced asymmetry in shoreline planform geometries. In the experiments with higher titling rates, deposition quickly ceased on the uplift side and stacked conformable sequences of delta lobes on the subsidence side. The result was an overall lack of progradation in all directions. Progressively greater tilting rates used in these high tilting runs yielded steering of channels towards the direction with higher subsidence and developed even more asymmetrical stratal patterns. Characteristic tectonic and channel timescales applied to the experimental conditions prove to be good predictors of the fluviodeltaic planform and stratigraphic asymmetries. The deltaic asymmetry for the Ganges–Brahmaputra (G–B) system is largely comparable to the experiments with timescale ratios similar to those estimated for the G–B system.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12086
2014-08-19
2024-03-28
Loading full text...

Full text loading...

References

  1. Alam, M., Alam, M.M., Curray, J.R., Chowdhury, A.L.R. & Gani, M.R. (2003) An overview of the sedimentary geology of the bengal basin in relation to the regional tectonic framework and basin‐fill history. Sed. Geol., 155, 179–208.
    [Google Scholar]
  2. Alexander, J. & Leeder, M.R. (1987) Active tectonic control on alluvial architecture; recent developments in fluvial sedimentology. In: Third International Fluvial Sedimentology Conference, Fort Collins, Co, United States, Aug. 1985 (Ed. by F.G.Ethridge , R.M.Flores , M.D.Harvey & J.N.Weaver ), 39, 243–252, SEPM, Special Publication, United States (USA).
    [Google Scholar]
  3. Ali, A., Mynett, A.E. & Azam, M.H. (2007) Sediment dynamics in the meghna estuary, Bangladesh: a model study. J. Waterw. Port Coast. Ocean Eng., 133, 255–263.
    [Google Scholar]
  4. Allen, J.R.L. (1978) Studies in fluviatile sedimentation; an exploratory quantitative model for the architecture of avulsion‐controlled alluvial sites. Sed. Geol., 21, 129–147.
    [Google Scholar]
  5. Allison, M.A. (1998) Historical changes in the Ganges‐Brahmaputra delta front. J. Coastal Res., 14, 1269–1275.
    [Google Scholar]
  6. Allison, M.A., Khan, S.R., Goodbred, S.L. & Kuehl, S.A. (2003) Stratigraphic evolution of the late holocene Ganges‐Brahmaputra lower delta plain. Sed. Geol., 155, 317–342.
    [Google Scholar]
  7. Armstrong, R.L. (1978) Cenozoic igneous history of the U.S. Cordillera from 42 to 49n latitude. Geo. Soc. Am. Mem., 152, 265–282.
    [Google Scholar]
  8. Barua, D.K. & Kana, T.W. (1995) Deep‐water wave hindcasting, wave refraction modeling, and wind and wave‐induced motions in the East Ganges Brahmaputra delta coast. J. Coastal Res., 11, 834–848.
    [Google Scholar]
  9. Bhattacharya, A.A. (1992) Tropical tidal flat sedimentation around meandering tidal creeks of teh Ganges Delta, Northeast India. Courier Forschungsinstitut Senckenberg, 151, 9.
    [Google Scholar]
  10. Bridge, J.S. & Leeder, M.R. (1979) A simulation model of alluvial stratigraphy. Sedimentology, 26, 617–644.
    [Google Scholar]
  11. Bristow, C.S. (1993) Sedimentary structures exposed in bar tops in the Brahmaputra River, Bangladesh. Geo. Soc. Lond. Spec. Publ., 75, 277–289.
    [Google Scholar]
  12. DeCelles, P.G., Kapp, P., Ding, L. & Gehrels, G.E. (2007) Late cretaceous to middle tertiary basin evolution in the central tibetan plateau: changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geol. Soc. Am. Bull., 119, 654–680.
    [Google Scholar]
  13. Engelder, T., Person, M. & Swenson, J. (2007) Tectonic Controls on Sediment Accommodation within a Half Graben; an Investigation of the Influence Imposed on the Syn‐Rift Architecture by Extension and Subsidence Kinematics, Abstracts with Programs ‐ Geological Society of America.
  14. Fagherazzi, S. (2008) Self‐organization of tidal deltas. Proc. Natl Acad. Sci. USA, 105, 18692–18695.
    [Google Scholar]
  15. Fitzgerald, D.M. (1984) Interactions between the ebb‐tidal delta and landward shoreline – price inlet, South‐Carolina. J. Sediment. Petrol., 54, 1303–1318.
    [Google Scholar]
  16. Gibeaut, J.C. & Davis, R.A. (1991) Computer‐simulation modeling of ebb‐tidal deltas. Coast. Sed., 2, 1389–1403.
    [Google Scholar]
  17. Goodbred, S.L. & Kuehl, S.A. (2000a) The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: late quaternary stratigraphy and evolution of the Ganges‐Brahmaputra delta. Sed. Geol., 133, 227–248.
    [Google Scholar]
  18. Goodbred, S.L. & Kuehl, S.A. (2000b) Enormous Ganges‐Brahmaputra sediment discharge during strengthened early holocene monsoon. Geology, 28, 1083–1086.
    [Google Scholar]
  19. Goodbred, S.L., Kuehl, S.A., Steckler, M.S. & Sarker, M.H. (2003) Controls on facies distribution and stratigraphic preservation in the Ganges‐Brahmaputra delta sequence. Sed. Geol., 155, 301–316.
    [Google Scholar]
  20. Gupta, N., Kleinhans, M.G., Addink, E.A., Atkinson, P.M. & Carling, P.A. (2014) One‐dimensional modeling of a recent ganga avulsion: assessing the potential effect of tectonic subsidence on a large river. Geomorphology, 213, 24–37.
    [Google Scholar]
  21. van Heijst, M.W.I.M. & Postma, G. (2001) Fluvial response to sea‐level changes: a quantitative analogue, experimental approach. Basin Res., 13, 269–292.
    [Google Scholar]
  22. Heller, P.L. & Paola, C. (1996) Downstream changes in alluvial architecture: an exploration of controls on channel‐stacking patterns. J. Sediment. Res., 66, 297–306.
    [Google Scholar]
  23. Hickson, T.A., Sheets, B.A., Paola, C. & Kelberer, M. (2005) Experimental test of tectonic controls on three‐dimensional alluvial facies architecture. J. Sediment. Res., 75, 710–722.
    [Google Scholar]
  24. Kim, W. & Jerolmack, D.J. (2008) The pulse of calm fan deltas. J. Geol., 116, 315–330.
    [Google Scholar]
  25. Kim, W. & Muto, T. (2007) Autogenic response of alluvial‐bedrock transition to base‐level variation: experiment and theory. J. Geophy. Res. Earth Surface, 112, F03S14.
    [Google Scholar]
  26. Kim, W. & Paola, C. (2007) Long‐period cyclic sedimentation with constant tectonic forcing in an experimental relay ramp. Geology, 35, 331–334.
    [Google Scholar]
  27. Kim, W., Paola, C., Swenson, J.B. & Voller, V.R. (2006a) Shoreline response to autogenic processes of sediment storage and release in the fluvial system. J. Geophy. Res. Earth Surface, 111, F04013.
    [Google Scholar]
  28. Kim, W., Paola, C., Voller, V.R. & Swenson, J.B. (2006b) Experimental measurement of the relative importance of controls on shoreline migration. J. Sediment. Res., 76, 270–283.
    [Google Scholar]
  29. Kim, W., Sheets, B.A. & Paola, C. (2010) Steering of experimental channels by lateral basin tilting. Basin Res., 22, 286–301.
    [Google Scholar]
  30. Lamb, M.A., Martin, L.K., Hickson, T.A., Umhoefer, P.J. & Eaton, L. (2012) Stratigraphy and Age of the Lower Horse Spring Formation in the Longwell Ridges Area, Southern Nevada: Implications for Tectonic Interpretations (Ed. by, 463, 171‐201. Geological Society of America Special Papers.
  31. Leeder, M.R. (1978) A Quantitative Stratigraphic Model for Alluvium, with Special Reference to Channel Deposit Density and Interconnectedness; Fluvial Sedimentology. First international symposium on fluvial sedimentology, Calgary, Alberta, Canada, Oct. 20–22, 1977, 587‐596.
  32. Milliman, J.D. & Syvitski, J.P.M. (1992) Geomorphic tectonic control of sediment discharge to the ocean ‐ the importance of small mountainous rivers. J. Geol., 100, 525–544.
    [Google Scholar]
  33. Mullin, J. & Ellis, C. (2008) Method to produce grain‐scale digital images of large experimental sedimentary deposits and other imperfectly flat stratigraphy. J. Sediment. Res., 78, 239–244.
    [Google Scholar]
  34. Nadon, G.C., Cobb, M. & Smith, J.P. (1999). Partioning the Controls on Rates of Formation of Accomodation Space in a Distal Foreland Basin. Annual Meetings Expanded Abstracts, American Association of Petroleum Geologists.
  35. Pal, T., Chakraborty, P.P., Gupta, T.D. & Singh, C.D. (2003) Geodynamic evolution of the outer‐arc‐forearc belt in the andaman islands, the central part of the burma‐java subduction complex. Geol. Mag., 140, 289–307.
    [Google Scholar]
  36. Palamenghi, L., Schwenk, T., Spiess, V. & Kudrass, H.R. (2011) Seismostratigraphic analysis with centennial to decadal time resolution of the sediment sink in the Ganges‐Brahmaputra subaqueous delta. Cont. Shelf Res., 31, 712–730.
    [Google Scholar]
  37. Paola, C., Mullin, J., Ellis, C., Mohrig, D.C., Swenson, J.B., Parker, G.S., Hickson, T., Heller, P.L., Pratson, L., Syvitski, J., Sheets, B. & Strong, N. (2001) Experimental stratigraphy. GSA Today, 11, 4–9.
    [Google Scholar]
  38. Paola, C., Straub, K., Mohrig, D. & Reinhardt, L. (2009) The “unreasonable effectiveness” of stratigraphic and geomorphic experiments. Earth Sci. Rev., 97, 1–43.
    [Google Scholar]
  39. Parsons, A.J., Michael, N.A., Whittaker, A.C., Duller, R.A. & Allen, P.A. (2012) Grain‐size trends reveal the late orogenic tectonic and erosional history of the South‐Central Pyrenees, Spain. J. Geolog. Soc., 169, 111–114.
    [Google Scholar]
  40. Pickering, J.L., Goodbred, S.L.Jr, Reitz, M.D., Hartzog, T.R., Mondal, D.R. & Hossain, M. (2014) Late quaternary sedimentary record and holocene channel avulsions of the Jamuna and old Brahmaputra River valleys in the upper bengal delta plain. Geomorphology. 227, 123–136.
    [Google Scholar]
  41. Plink‐Bjorklund, P. (2012) Effects of tides on deltaic deposition: causes and responses. Sed. Geol., 279, 107–133.
    [Google Scholar]
  42. Powell, E.J., Kim, W. & Muto, T. (2012) Varying discharge controls on timescales of autogenic storage and release processes in fluvio‐deltaic environments: tank experiments. J. Geophy. Res. Earth Surface, 117, F02011.
    [Google Scholar]
  43. Roy, M.K., Saha, S., Ahmed, S.S. & Mazumder, Q.H. (2005) Tide, morphology, litho‐facies, zonation and evolution of a middle holocene to present estuary – Meghna, in South Central Bangladesh. J. Geol. Soc. India, 66, 354–364.
    [Google Scholar]
  44. Sha, L.P. (1989) Variation in ebb‐delta morphologies along the West and East Frisian‐Islands, the Netherlands and Germany. Mar. Geol., 89, 11–28.
    [Google Scholar]
  45. Stanley, D.J. & Hait, A.K. (2000) Holocene depositional patterns, neotectonics and sundarban mangroves in the western Ganges‐Brahmaputra delta. J. Coastal Res., 16, 26–39.
    [Google Scholar]
  46. Straub, K.M., Paola, C., Kim, W. & Sheets, B. (2013) Experimental investigation of sediment‐dominated vs. tectonics‐dominated sediment transport systems in subsiding basins. J. Sediment. Res., 83, 1162–1180.
    [Google Scholar]
  47. Tal, M., Frey, P., Kim, W., Lajeunesse, E., Limare, A. & Metivier, F. (2012) The use of imagery in laboratory based experiments. In: Remote Sensing of Rivers: Management and Applications (Ed. by P.Carbonneau & H.Piegay ), pp. 299–321. John Wiley & Sons Ltd, Chichester, UK.
    [Google Scholar]
  48. Tapponnier, P., Mercier, J.L., Proust, F., Andrieux, J., Armijo, R., Bassoullet, J.P., Brunel, M., Burg, J.P., Colchen, M., Dupre, B., Girardeau, J., Marcoux, J., Mascle, G., Matte, P., Nicolas, A., Li, T.D., Xiao, X.C., Chang, C.F., Lin, P.Y., Li, G.C., Wang, N.W., Chen, G.M., Han, T.L., Wang, X.B., Den, W.M., Zhen, H.X., Sheng, H.B., Cao, Y.G., Zhou, J. & Qiu, H.S. (1981) The tibetan side of the India‐Eurasia collision. Nature, 294, 405–410.
    [Google Scholar]
  49. Tregoning, P., Brunner, F.K., Bock, Y., Puntodewo, S.S.O., Mccaffrey, R., Genrich, J.F., Calais, E., Rais, J. & Subarya, C. (1994) 1st geodetic measurement of convergence across the Java trench. Geophys. Res. Lett., 21, 2135–2138.
    [Google Scholar]
  50. Van Dijk, M., Postma, G. & Kleinhans, M.G. (2009) Autocyclic behaviour of fan deltas: an analogue experimental study. Sedimentology, 56, 1569–1589.
    [Google Scholar]
  51. van der Vegt, M., Schuttelaars, H.M. & de Swart, H.E. (2006) Modeling the equilibrium of tide‐dominated ebb‐tidal deltas. J. Geophy. Res. Earth Surface, 111, F02013.
    [Google Scholar]
  52. van der Vegt, M., Schuttelaars, H.M. & de Swart, H.E. (2009) The influence of tidal currents on the asymmetry of tide‐dominated ebb‐tidal deltas. Cont. Shelf Res., 29, 159–174.
    [Google Scholar]
  53. Weissmann, G. (2005). Controls on Accommodation in Fluvial Deposiional Systems; Fluvial Fan Sequence Stratigraphy. Abstacts, Annual Meeting, American Association of Petroleum Geologists.
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12086
Loading
/content/journals/10.1111/bre.12086
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error