1887
Volume 27, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

The Plataforma Burgalesa is a partly exposed extensional forced fold system with an intermediate salt layer, which has developed along the southern portion of the Basque‐Cantabrian Basin from Malm to Early Cretaceous as part of the Bay of Biscay‐Pyrenean rift system. Relationships between syn‐ and pre‐rift strata of the supra‐salt cover sequence and distribution of intra‐cover second‐order faults are observed both along seismic sections and at the surface. These relationships indicate an along‐strike variability of the extensional structural style. After a short period of salt mobilization and forced folding, high slip rates in the central portion of the major basement faults have rapidly promoted brittle behaviour of the salt layer, preventing further salt mobilization and facilitating the propagation of the fault across the salt layer. In contrast, at the tip regions of basement faults, slower slip rates have facilitated ductile salt behaviour, ensuring its further evaporite evacuation, preventing fault propagation across the salt layer and, in essence, allowing for a long‐living forced folding process. Our results indicate the important effect of along‐strike variation in displacement and displacement rates in controlling evaporite behaviour in extensional basins. Amount of displacement and displacement rates are key factors controlling the propagation of basement faults across evaporite layers. In addition, growth strata patterns are recognized as a powerful tool for constraining the up‐dip propagation history of basement faults in extensional fault‐related fold systems with intermediate décollement levels.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12089
2014-08-28
2024-04-19
Loading full text...

Full text loading...

References

  1. Alcalde, J., Marzán, I., Saura, E., Martí, D., Ayarza, P., Juhlin, C., Pérez‐Estaún, A. & Carbonell, R. (2014) 3D geological characterization of the Hontomín CO2 storage site, Spain: multidisciplinary approach from seismics, well‐logging and regional data. Tectonophysics, 627, 6–25.
    [Google Scholar]
  2. Alonso, J.L., Marcos, A. & Suarez, A. (2009) Paleogeographic inversion resulting from large out of sequence breaching thrusts: the Leon Fault (Cantabrian Zone, NW Iberia). A new picture of the external Variscan Thrust Belt in the Ibero‐Armorican Arc. Geol. Acta, 7, 451–473.
    [Google Scholar]
  3. Alves, T., Gawthorpe, R.L., Hunt, D.W. & Monteiro, J.H. (2002) Jurassic tectono‐sedimentary evolution of the Northern Lusitanian Basin (offshore Portugal). Mar. Pet. Geol., 19, 727–754.
    [Google Scholar]
  4. Bodego, A. & Agirrezabala, L.M. (2013) Syn‐depositional thin‐and thick‐skinned extensional tectonics in the mid‐Cretaceous Lasarte sub‐basin, western Pyrenees. Basin Res., 25, 594–612.
    [Google Scholar]
  5. Brown, R.N. (1980) History of exploration and discovery of Morgan, Ramadan, and July oilfields, Gulf of Suez, Egypt. Can. Soc. Pet. Geol. Memoir, 6, 733–764.
    [Google Scholar]
  6. Brun, J.P. & Maudit, T.P.O. (2008) Rollovers in salt tectonics: the inadequacy of the listric fault model. Tectonophysics, 457, 1–11.
    [Google Scholar]
  7. Burliga, S., Koyi, H. & Chemia, Z. (2012) Analogue and numerical modelling of salt supply to a diapiric structure rising above an active basement fault. Geol. Soc. Lond. Spec. Publ., 363, 395–408.
    [Google Scholar]
  8. Carola, E., Tavani, S., Ferrer, O., Granado, P., Quintà, A., Butillé, M. & Muñoz, J.A. (2013) Along‐strike extrusion at the transition between thin‐and thick‐skinned domains in the Pyrenean Orogen (northern Spain). Geol. Soc. Lond. Spec. Publ., 377, 119–140.
    [Google Scholar]
  9. Cartwrigth, J.A., Trudgill, B.D. & Mansfield, C.S. (1995) Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from Canyonlands Grabens of SE Utah. J. Struct. Geol., 17, 1319–1326.
    [Google Scholar]
  10. Cosgrove, J.W. & Ameen, M.S. (2000) A comparison of the geometry, spatial organization and fracture patterns associated with forced folds and buckle folds. Geol. Soc. Lond. Spec. Publ., 169, 7–21.
    [Google Scholar]
  11. De Vicente, G., Cloetingh, S., Van Wees, J.D. & Cunha, P.P. (2011) Tectonic classification of Cenozoic Iberian foreland basins. Tectonophysics, 502, 38–61.
    [Google Scholar]
  12. Duffy, O.B., Gawthorpe, R.L., Docherty, M. & Brocklehurst, S.H. (2013) Mobile evaporite controls on the structural style and evolution of rift basins: Danish Central Graben, North Sea. Basin Res., 25, 310–330.
    [Google Scholar]
  13. Espina, R., Alonso, J.L. & Pulgar, J.A. (2004) Extensión Triásica en la Cuenca Vasco‐Cantábrica. In: Geología de España (Ed. by J.A.Vera ), pp. 338–339. SGE‐IGME, Madrid.
    [Google Scholar]
  14. Ferrill, D.A., Morris, A.P. & Smart, K.J. (2007) Stratigraphic control on extensional fault propagation folding: big Brushy Canyon monocline, Sierra Del Carmen, Texas. Geol. Soc. Lond. Spec. Publ., 292, 203–217.
    [Google Scholar]
  15. Ford, M., Carlier, Le., de Veslud, C. & Bourgeois, O. (2007) Kinematic and geometric analysis of fault‐related folds in a rift setting: the Dannemarie basin, Upper Rhine Graben, France. J. Struct. Geol., 29, 1811–1830.
    [Google Scholar]
  16. Garcia‐Mondejar, J., Pujalte, V. & Robles, S. (1986) Caracteristicas sedimentologicas secuenciales y tectonoestratigraficas del triasico de la Cantabria y norte de Palencia. Cuad. Geol. Ibérica, 10, 151–172.
    [Google Scholar]
  17. García‐Mondéjar, J., Agirrezabala, L.M., Aranburu, A., Fernández‐Mendiola, P.A., Gómez‐Pérez, I., López‐Horgue, M. & Rosales, I. (1996) Aptian‐Albian tectonic pattern of the Basque‐Cantabrian Basin (Northern Spain). Geol. J., 31, 13–45.
    [Google Scholar]
  18. Hernaiz, P.P. (1994) La falla de Ubierna (margen SO de la cuenca Cantabrica). Geogaceta, 16, 39–42.
    [Google Scholar]
  19. Kane, K.E., Jackson, C.A.L. & Larsen, E. (2010) Normal fault growth and fault‐related folding in a salt‐influenced rift basin: south Viking Graben, offshore Norway. J. Struct. Geol., 32, 490–506.
    [Google Scholar]
  20. Koyi, H. & Petersen, K. (1993) Influence of basement faults on the development of salt structures in the Danish Basin. Mar. Pet. Geol., 10, 82–94.
    [Google Scholar]
  21. Koyi, H., Jenyon, M.K. & Peterson, K. (1993) The effect of basement faulting on diapirism. J. Pet. Geol, 16, 285–312.
    [Google Scholar]
  22. Krzywiec, P. (2002) The Owino structure (NW Mid‐Polish Trough) – salt diapir or inversion‐related compressional structure?Geol. Quart., 46, 337–346.
    [Google Scholar]
  23. Lanaja, J.M. (1987) Contribución de la exploracíon petrolífera al conocimiento de la geología de España, pp. 1–465. Istituto Tecnólogico GeoMinero de España, Madrid.
    [Google Scholar]
  24. Laubscher, H.P. (1982) Die Sudostecke des Rheingrabens‐ein kinematisches und dynamisches problem. Eclogae Geol. Helv., 75, 101–116.
    [Google Scholar]
  25. Lewis, M.M., Jackson, C.A.L. & Gawthorpe, R.L. (2013) Salt‐influenced normal fault growth and forced folding: the Stavanger Fault System, North Sea. J. Struct. Geol., 54, 156–173.
    [Google Scholar]
  26. Maurin, J.C. & Niviere, B. (2000) Extentional forced folding and decollement of the pre‐rift series along the Rhine graben and their influence on the geometry of the syn‐rift sequences. Geol. Soc. Lond. Spec. Publ., 169, 73–86.
    [Google Scholar]
  27. Morley, C.K. & Guerin, G. (1996) Comparison of gravity‐driven deformation styles and behavior associated with mobile shales and salt. Tectonics, 15, 1154–1170.
    [Google Scholar]
  28. Muñoz, J.A. (2002) Alpine tectonics I: the Alpine system north of the Betic Cordillera: the Pyrenees. In: The Geology of Spain (Ed. by W.Gibbons , T.Moreno ), pp. 370–385. Geological Society, London, United Kingdom.
    [Google Scholar]
  29. Oliva‐Urcia, B., Román‐Berdiel, T., Casas, A.M., Bógalo, M.F., Osácar, M.C. & García‐Lasanta, C. (2013) Transition from extensional to compressional magnetic fabrics in the Cretaceous Cabuérniga basin (North Spain). J. Struct. Geol., 46, 220–234.
    [Google Scholar]
  30. Pascoe, R., Hooper, R., Storhaug, K. & Harper, H. (1999) Evolution of extensional styles at the southern termination of the Nordland Ridge, Mid‐Norway: a response to variations in coupling above Triassic salt. In: Petroleum Geology of Norwest Europe: Proceedings of the 5th Conference (Ed. by A.J.Fleet & S.A.R.Boldy ), pp. 83–90. Geological Society, London.
    [Google Scholar]
  31. Pedreira, D., Pulgar, J.A., Gallart, J. & Torne, M. (2007) Three‐dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees‐Cantabrian Mountains. J. Geophys. Res., 112, B12405.
    [Google Scholar]
  32. Pujalte, V., Robles, S. & Hernández, J.M. (1996) La sedimentación continental del Grupo Campóo (Malm‐Cretácico basal de Cantabria, Burgos y Palencia): testimonio de un reajuste hidrográfico al inicio de una fase rift. Cuad. Geol. Ibérica, 21, 227–251.
    [Google Scholar]
  33. Pujalte, V., Robles, S., Garcıa‐Ramos, J.C. & Hernández, J.M. (2004) El Malm‐Barremiense non marinos de la Cordillera Cantabrica. In: Geología de España (Ed. by J.A.Vera ), pp. 288–291. SGE‐IGME, Madrid.
    [Google Scholar]
  34. Quesada, S., Robles, S. & Pujalte, V. (1993) El Jurasico Marino del margen suroccidental de la Cuenca Vasco‐Cantábrica y su relación con la exploración de hidrocarburos. Geogaceta, 13, 92–96.
    [Google Scholar]
  35. Quesada, S., Robles, S. & Rosales, I. (2005) Depositional architecture and transgressive–regressive cycles within Liassic backstepping carbonate ramps in the Basque‐Cantabrian basin, northern Spain. J. Geol. Soc., 162, 531–538.
    [Google Scholar]
  36. Quintá, A., Tavani, S. & Roca, E. (2012) Fracture pattern analysis as a tool for constraining the interaction between regional and diapir‐related stress fields: Poza de la Sal Diapir (Basque Pyrenees, Spain). Geol. Soc. Lond. Spec. Publ., 363, 521–532.
    [Google Scholar]
  37. Rat, P. (1988) The Basque‐Cantabrian Basin between the Iberian and European plates some facts but still many problems. Rev. Soc. Geol. España, 1, 327–348.
    [Google Scholar]
  38. Richardson, N.J., Underhill, J.R. & Lewisw, G. (2005) The role of evaporite mobility in modifying subsidence patterns during normal fault growth and linkage, Halten Terrace, Mid‐Norway. Basin Res., 17, 203–223.
    [Google Scholar]
  39. Roca, E., Muñoz, J.A., Ferrer, O. & Ellouz, N. (2011) The role of the Bay of Biscay Mesozoic extensional structure in the configuration of the Pyrenean orogen: constraints from the MARCONI deep seismic reflection survey. Tectonics, 30, TC2001.
    [Google Scholar]
  40. Rowan, M.G., Peel, F.J. & Vendeville, B.C. (2004) Gravity‐driven fold belts on passive margins. AAPG Memoir, 82, 157–182.
    [Google Scholar]
  41. Serrano, A., Martínez del Olmo, W. & Camara, P. (1989) Diapirismo del Trías Salino en el Dominio Cántabro‐Navarro. In: Libro Homenaje a Rafael Soler, pp. 115–121. A.G.G.E.E.P., Madrid.
    [Google Scholar]
  42. Soto, R., Casas‐Sainz, A.M., Villalain, J.J. & Oliva‐Urcia, B. (2007) Mesozoic extension in the Basque‐Cantabrian basin (N Spain): contributions from AMS and brittle mesostructures. Tectonophysics, 44, 373–394.
    [Google Scholar]
  43. Stearns, D.W. (1978) Faulting and forced folding in the Rocky Mountain foreland. Geol. Soc. Am. Mem., 151, 1–38.
    [Google Scholar]
  44. Stewart, S.A., Harvey, M.J., Otto, S.C. & Weston, P.J. (1996) Influence of salt on salt geometry: examples from the UK salt basins. Geol. Soc. Lond. Spec. Publ., 100, 175–202.
    [Google Scholar]
  45. Stewart, S.A., Ruffell, A.H. & Harvey, M.J. (1997) Relationship between basement‐linked and gravity‐driven fault systems in the UKCS salt basins. Mar. Pet. Geol., 14, 581–604.
    [Google Scholar]
  46. Tavani, S. (2012) Plate‐kinematics in the Cantabrian Domain of the Pyrenean Orogen. Solid Earth, 3, 265–292.
    [Google Scholar]
  47. Tavani, S. & Muñoz, J.A. (2012) Mesozoic rifting in the Basque‐Cantabrian Basin (Spain): inherited faults, transversal structures and stress perturbation. Terra Nova, 24, 70–76.
    [Google Scholar]
  48. Tavani, S., Quintà, A. & Granado, P. (2011) Cenozoic right‐lateral wrench tectonics in the Western Pyrenees (Spain): the Ubierna Fault System. Tectonophysics, 509, 238–253.
    [Google Scholar]
  49. Tavani, S., Carola, E., Granado, P., Quintà, A. & Muñoz, J.A. (2013) Transpressive inversion of a Mesozoic extensional forced fold system with an intermediate décollement level in the Basque‐Cantabrian Basin (Spain). Tectonics, 32, 146–158.
    [Google Scholar]
  50. Tugend, J., Manatschal, G., Kusznir, N.J., Masini, E., Mohn, G. & Thinon, I. (2014) Formation and deformation of hyperextended rift systems: insights from rift domain mapping in the Bay of Biscay‐Pyrenees. Tectonics, 33, 1239–1276.
    [Google Scholar]
  51. Tvedt, A., Rotevatn, A., Jackson, C.A.L., Fossen, H. & Gawthorpe, R.L. (2013) Growth of normal faults in multilayer sequences: a 3D seismic case study from the Egersund Basin, Norwegian North Sea. J. Struct. Geol., 55, 1–20.
    [Google Scholar]
  52. Vendeville, B.C., Cobbold, P., Davy, P., Brun, J.P. & Choukroune, P. (1987) Physical models of extensional tectonics at various scales. Geol. Soc. Lond. Spec. Publ., 28, 95–107.
    [Google Scholar]
  53. Withjack, M.O. & Callaway, J.S. (2000) Active normal faulting beneath a salt layer – an experimental study of deformation in the cover sequence. AAPG Bull., 84, 627–651.
    [Google Scholar]
  54. Withjack, M.O., Meisling, K. & Russell, L. (1989) Forced folding and basement‐detached normal faulting in the Haltenbanken area, offshore Norway. Am. Assoc. Pet. Geol. Mem., 46, 567–575.
    [Google Scholar]
  55. Withjack, M.O., Olson, J. & Peterson, E. (1990) Experimental models of extensional forced folds. AAPG Bull., 74, 1038–1054.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12089
Loading
/content/journals/10.1111/bre.12089
Loading

Data & Media loading...

Supplements

Uninterpreted seismic profiles of Fig. 7.

PDF
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error