1887
Volume 63 Number 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

We present an integrated approach to the seismic interpretation of one of the world's deepest gold ore body (Carbon Leader Reef) using three‐dimensional seismic data, ultrasonic velocity measurements at elevated stresses, and modified instantaneous attribute analysis. Seismic wave velocities of the drill‐core samples (quartzite, shale, and conglomeratic reef) from the mine are sensitive to uniaxial stress changes, i.e., they slowly increase with increasing pressure until they reach maximum value at ∼25 MPa. For all the samples, seismic velocities are constant above 25 MPa, indicating a possible closure of microcracks at stress corresponding to 1.0 km–1.5 km. A reflection coefficient of 0.02 computed between hanging wall and footwall quartzites of the Carbon Leader Reef ore body suggests that it may be difficult to obtain a strong seismic reflection at their interface. Our modified seismic attribute algorithm, on the other hand, shows that the detection of the lateral continuity of the Carbon Leader Reef reflector can significantly be improved by sharpening the seismic traces. Three‐dimensional seismic data reveal that faults with throws greater than 25 m that offset the Carbon Leader Reef can clearly be seen. Faults with throws less than 25 m but greater than 2‐m throw were identified through horizon‐based attribute analysis, while most dykes and sills with thickness less than 25 m were invisible. The detection of the lateral continuity of the Carbon Leader Reef reflector and its depth position is greatly improved by integrating the modified instantaneous attributes with controls from borehole observations. The three‐dimensional visualization and effective interpretation of the Carbon Leader Reef horizon shows a host of structurally complex ore body blocks that may impact future shaft positioning and reduce its associated risks.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12273
2015-07-24
2024-03-29
Loading full text...

Full text loading...

References

  1. BarnesA.E.1993. Instantaneous spectral bandwidth and dominant frequency with applications to seismic reflection data. Geophysics58, 419–428.
    [Google Scholar]
  2. BeachA. and SmithR.2007. Structural geometry and development of the Witwatersrand Basin, South Africa. In: Deformation of the Continental Crust: The Legacy of Mike Coward (eds A.C.Ries , W.H.R.Butler and R.H.Graham ), pp. 533–542. Geological Society of London Special Publication.
    [Google Scholar]
  3. BellefleurG., MalehmirA. and MüllerC.2012. Elastic finite‐difference modeling of volcanic‐hosted massive sulfide deposits: A case study from Half Mile Lake, New Brunswick, Canada. Geophysics77, WC25–WC36.
    [Google Scholar]
  4. BrownA.R.1996. Seismic attributes and their classification. The Leading Edge10, 1090.
    [Google Scholar]
  5. CampbellG. and CrottyJ.H.1990. 3‐D seismic mapping for mine planning purposes at the South Deep Prospect. In: Proceedings International Deep Mining Conference: SAIMM Symposium Series S10 Vol. 2 (eds D.A.J.Ross‐Watt and P.D.K.Robinson ), pp. 569–597.
    [Google Scholar]
  6. ChopraS., CastagnaJ. and PortniaguineO.2006. Seismic resolution and thin‐bed reflectivity inversion. Canadian Society of Exploration Geophysicists Recorder1, 19–25.
    [Google Scholar]
  7. ChopraS. and MarfurtK.J.2007. Curvature attribute applications to 3D surface seismic data. The Leading Edge26, 404–414.
    [Google Scholar]
  8. CowardM.P., SpencerR.M. and SpencerC.E.1995. Development of the Witwatersrand Basin, South Africa. Geological Society of London, Special Publication95(1), 243–269.
    [Google Scholar]
  9. DalleyR.M.E., GeversC.A., StampfliG.M., DaviesD.J., GastaldiC.N., RuijtenbergP.A.1989. Dip and azimuth displays for 3D seismic interpretation. First Break7, 86–95.
    [Google Scholar]
  10. DankertB.T. and HeinK.A.A.2010. Evaluating the structural character and tectonic history of the Witwatersrand Basin. Precambrian Research177, 1–22.
    [Google Scholar]
  11. DehghannejadM., JuhlinC., MalehmirA., SkyttäP. and WeihedP.2010. Reflection seismic imaging of the upper crust in the Kristineberg mining area, northern Sweden. Journal of Applied Geophysics71, 125–136.
    [Google Scholar]
  12. DehghannejadM., MalehmirA., JuhlinC. and SkyttäP.2012. 3D constraints and finite‐difference modeling of massive sulfide deposits: The Kristineberg seismic lines revisited, northern Sweden. Geophysics77, WC69–WC79.
    [Google Scholar]
  13. ErismannF.2007. The South Deep Au‐U ore deposit Witwatersrand Basin, Republic of South Africa, Fluid inclusions and hydrothermal processes. MSc thesis, Eidgenössische Technische Hochschule Zürich and final report to joint venture partners of South Deep Mine.
  14. FomelS.2007. Local seismic attributes. Geophysics72, 29–33.
    [Google Scholar]
  15. FrimmelH.E., GrovesD.I., KirkJ., RuitzJ., ChesleyJ. and MinterW.E.L.2005. The formation and preservation of the Witwatersrand goldfields, the world's largest gold province. Economic Geology (100th Anniversary Volume), pp. 769–797
    [Google Scholar]
  16. GibsonM.A.S.1997. The structural interpretation and seismic characterization of a 3‐D seismic survey, Western Deep Levels Gold Mine, South Africa. M.Sc. Thesis, University of Leeds, U.K.
  17. GibsonM.A.S., JolleyS.J. and BarnicoatA.C.2000. Interpretation of the Western Ultra Deep Levels 3D seismic survey. The Leading Edge19, 730–735.
    [Google Scholar]
  18. JolleyS.J., FreemanS.R., BarnicoatA.C., PhillipsG.M., KnipeR.J., PatherA.2004. Structural controls on Witwatersrand Gold mineralization. Journal of Structural Geology26, 1026–1086.
    [Google Scholar]
  19. JolleyS.J., StuartG.W., FreemanS.R., KnipeR.J., KershawD., McAllisterE.2007. Progressive deformation of a late orogenic thrust system, from duplex development to extensional reactivation and disruption: Witwatersrand basin, South Africa. Geological Society of London Special Publication272, 543–569.
    [Google Scholar]
  20. JuhojunttiN., WoodG., JuhlinC., O'DowdC., DueckP. and CosmaC.2012. 3D seismic survey at the Millennium uranium deposit, Saskatchewan, Canada: Mapping depth to basement and mapping post‐Athabasca structure near the orebody. Geophysics77, WC245–WC258.
    [Google Scholar]
  21. KernH., MengelK., StraussK.W., IvankinaT.I., NikitinA.N. and KukkonenI.T.2009. Elastic wave velocities, chemistry and modal mineralogy of crustal rocks sampled by the Outokumpu scientific drill hole: Evidence from lab measurements and modelling. Physics of the Earth and Planetary175, 151–166.
    [Google Scholar]
  22. KoivistoE., MalehmirA., HeikkinenP., HeinonenS. and KukkonenI.2012. 2D reflection seismic investigations in the Kevitsa Ni‐Cu‐PGE deposit, northern Finland. Geophysics77, WC149–WC162.
    [Google Scholar]
  23. KrapežB.1985. The Ventersdorp Contact placer: a gold‐pyrite placer of stream and debris‐flow origins from the Archaean Witwatersrand Basin of South Africa. Sedimentology32, 223–234.
    [Google Scholar]
  24. KukkonenI.T., HeinonenS., HeikkinenP. and Sorjonen‐WardP.2012. Delineating ophiolite‐derived host rocks of massive sulfide Cu‐Co‐Zn deposits with 2D high‐resolution seismic reflection data in Outokumpu, Finland. Geophysics77, WC213–WC222.
    [Google Scholar]
  25. KuusistoM., KukkonenI.T., HeikkinenP. and PesonenL.J.2006. Lithological interpretation of crustal composition in the Fennoscandian Shield with seismic velocity data. Tectonophysics420, 283–299.
    [Google Scholar]
  26. MalehmirA. and BellefleurG.2009. 3D seismic reflection imaging of volcanic‐hosted massive sulfide deposits: Insights from reprocessing Halfmile Lake data, New Brunswick, Canada. Geophysics74, B209–B219.
    [Google Scholar]
  27. MalehmirA., DahlinP., LundbergE., JuhlinC., SjöströmH. and HögdahlK.2011. Reflection seismic investigations in the Dannemora area, central Sweden: insights into the geometry of poly‐phase deformation zones and magnetite‐skarn deposits. Journal of Geophysical Research116, B11307.
    [Google Scholar]
  28. MalehmirA., DurrheimR., BellefleurG., UrosevicM., JuhlinC., WhiteD.2012a. Seismic methods in mineral exploration and mine planning: a general overview of past and present case histories and a look into the future. Geophysics77, WC173–WC190.
    [Google Scholar]
  29. MalehmirA., AnderssonM., LebedevM., UrosevicM. and MikhaltsevitchV.2013. Experimental estimation of velocities and anisotropy of a series of Swedish crystalline rocks and ores. Geophysical Prospecting61, 153–167.
    [Google Scholar]
  30. MalehmirA., KoivistoE., ManziM., CheraghiS., DurrheimR., BellefleurR.2014. A review of reflection seismic investigations in three major metallogenic regions: The Kevitsa Ni‐Cu‐PGE district (Finland), Witwatersrand goldfields (South Africa), and the Bathurst Mining Camp (Canada). Ore Geology Reviews56, 423–441.
    [Google Scholar]
  31. MalehmirA., JuhlinC., WijnsC., UrosevicM., ValastiP. and KoivistoE.2012b. 3D reflection seismic investigation for open‐pit mine planning and exploration in the Kevitsa Ni‐Cu‐PGE deposit, Northern Finland. Geophysics77, WC95–WC108.
    [Google Scholar]
  32. MalehmirA., TryggvasonA., JuhlinC., Rodriguez‐TablanteJ. and WeihedP.2006. Seismic imaging and potential field modeling to delineate structures hosting VHMS deposits in the Skellefte Ore District, northern Sweden. Tectonophysics426, 319–339.
    [Google Scholar]
  33. MalehmirA., TryggvasonA., LickorishH. and WeihedP.2007. Regional structural profiles in the western part of the Palaeoproterozoic Skellefte ore district, northern Sweden. Precambrian Research159, 1–18.
    [Google Scholar]
  34. MalinowskiM., SchetselaarE. and WhiteD.J.2012. 3D seismic imaging of volcanogenic massive sulphide deposits in the Flin Flon mining camp, Canada: Part 2‐Forward modelling. Geophysics77, WC81–WC93.
    [Google Scholar]
  35. ManziM.S.D., DurrheimR.J., HeinK.A.A. and KingN.2012a. 3D edge detection seismic attributes used to map potential conduits for water and methane in deep gold mines in the Witwatersrand basin, South Africa. Geophysics77, WC133–WC147.
    [Google Scholar]
  36. ManziM.S.D., GibsonM.A.S., HeinK.A.A., KingN. and DurrheimR.J.2012b. Application of 3D seismic techniques to evaluate ore resources in the West Wits line goldfield and portions of the West Rand goldfield, South Africa. Geophysics77, WC163–WC171.
    [Google Scholar]
  37. ManziM.S.D., HeinK.A.A., DurrheimR.J. and KingN.2014. The Ventersdorp Contact Reef model in the Kloof Gold Mine as derived from 3D seismics, geological mapping and exploration borehole datasets. International Journal of Rock Mechanics and Mining Sciences66, 97–113.
    [Google Scholar]
  38. ManziM.S.D., HeinK.A.A., KingN. and DurrheimR.J.2013. Neoarchaean tectonic history of the Witwatersrand Basin and Ventersdorp Supergroup: New Constraints from high resolution 3D seismic reflection data.Tectonophysics590, 94–105.
    [Google Scholar]
  39. MayrS.I. and BurkhardtH.2006. Ultrasonic properties of sedimentary rocks: effect of pressure, saturation, frequency and microcracks. International Journal of Geophysics164, 246–258.
    [Google Scholar]
  40. McCarthyT.S.2006. The Witwatersrand Supergroup. In: The Geology of South Africa (eds M.R.Johnson , C.R.Anhaeusser and R.J.Thomas ), pp. 155–186. Geological Society of South Africa, Johannesburg/Council for Geosciences, Pretoria.
    [Google Scholar]
  41. MikhaltsevitchV., LebedevM. and GurevichB.2012. Low‐frequency measurements of the mechanical parameters of sandstone with low permeability. ASEG Extended Abstracts, pp. 1–4.
    [Google Scholar]
  42. PretoriusC.C., JamisonA. and IronsC.1989. Seismic exploration in the Witwatersrand Basin, Republic of South Africa. In: Proceedings of Exploration 87, pp. 241–253. Ontario Geological Survey.
    [Google Scholar]
  43. PretoriusC.C., MullerM.R., LarroqueM. and WilkinsC.2003. A review of 16 years of hardrock seismic of the Kaapvaal Craton. In: Hardrock Seismic Exploration, Geophysical Developments Vol. 10 (eds D.W.Eaton , B.Milkereit and M.H.Salisbury ), pp. 247–268. Society of Exploration Geophysicists.
    [Google Scholar]
  44. PretoriusC.C., SteenkampW.H. and SmithR.G.1994. Developments in data acquisition, processing, and interpretation over ten years of south vibroseismic surveying in South Africa. In: Proceedings of the 15th CMMI Congress, South African Institute of Mining and Metallurgy Vol. 3, pp. 249–258.
    [Google Scholar]
  45. Rock Solid Images
    Rock Solid Images2003. Seismic trace attributes and their projected use in prediction of rock properties and seismic facies, Houston, Texas, pp. 1–4.
  46. SalisburyM.H., MilkereitB., AscoughG., AdairR., MatthewsL., SchmittD.R.2000. Physical properties and seismic imaging of massive sulfides. Geophysics65, 1882–1889.
    [Google Scholar]
  47. SheriffR.E.1991. Encyclopedic Dictionary of Exploration Geophysics. SEG, Tulsa.
    [Google Scholar]
  48. StarkT.J.2009. Frequency enhancement via an integer multiplier or just another GeWizardry attribute? International Exposition and Annual Meeting, SEG, Expanded Abstract, 1092–1096.
  49. TanerM.T., KoehlerF. and SheriffR.E.1979. Complex seismic trace analysis. Geophysics44, 1041–1063.
    [Google Scholar]
  50. TrickettJ.C., DuwekeW.A. and KockS.2004. Three‐dimensional reflection seismic: worth its weight in platinum. Journal of the South African Institute of Mining and Metallurgy105, 252–263.
    [Google Scholar]
  51. UrosevicM.U., BhatG. and GrochauM.H.2012. Targeting nickel sulfide deposits from 3D seismic reflection data at Kambalda, Australia. Geophysics77, WC123–WC132.
    [Google Scholar]
  52. Van der WesthuizenW.A., De BruiynH. and MeintjesP.G.1991. The Ventersdorp Supergroup: An overview. Journal of African Earth Sciences3, 83–105.
    [Google Scholar]
  53. VermaaktD.T. and ChunnetI.E.1994. Tectono‐sedimentary processes which controlled the deposition of the Ventersdorp Contact Reef within the West Wits Line. In: Proceedings of the 15th Congress of the Council for Mining and Metallurgical Institutions Vol. 3 (ed AnhaeusserC.R. ), pp. 117–130. South African Institute of Mining and Metallurgy.
    [Google Scholar]
  54. WalshJ.B. and BraceW.F.1966. Elasticity of rock: A review of recent theoretical studies. Rock Mechanics Engineering Geology4, 283–297.
    [Google Scholar]
  55. WhiteD.J. and KjarsgaardB.A.2012. Seismic delineation of the Orion South Kimberlite, Fort a la Corne, Canada. Geophysics77, WC191–WC201.
    [Google Scholar]
  56. WhiteR.E.1991. Properties of instantaneous seismic attributes. The Leading Edge10, 26–32.
    [Google Scholar]
  57. WoodG., O'DowdC., CosmaC. and EnescuN.2012. An interpretation of surface and borehole seismic surveys for mine planning at the uranium deposit, northern Saskatchewan, Canada. Geophysics77, WC203–WC212.
    [Google Scholar]
  58. ZimmerM., PrasadM. and MavkoG.2002. Pressure and porosity influences on Vp – Vs ratio in unconsolidated sands. The Leading Edge21, 178–183.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12273
Loading
/content/journals/10.1111/1365-2478.12273
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Carbon Leader Reef; physical properties; seismic attributes; Witwatersrand Basin

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error