1887
Volume 13 Number 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Lake Balaton, a large shallow lake in Central Europe (Hungary), has been the site of extensive ultra‐high‐resolution acoustic and multichannel seismic profiling in the period of 1997–2013. These surveys showed the widespread occurrence of shallow gas in the lake sediments and their immediate substrata. We analyzed about 2000 km of two‐dimensional profiles and mapped the different gas occurrences in the uppermost 20 m. The anomalies caused by free gas were identified, classified, and assigned to upper, middle and lower levels based on gas signatures and stratigraphic position. Monitoring of the uppermost gas front has revealed temporal variations between surveys from different years and seasons that manifested in the changes of free gas content in the upper two levels. Free gas in the lower part of the lake sediments and at around the base of the mud indicated greater stability. The different nature of the three free gas levels can be explained by vertical changes in quantity, production rate, and solubility of methane and carbon dioxide gases. We suggest that methane was derived from the microbial decomposition of organic matter in the mud and Pleistocene peat at the base of the mud, whereas is transported to the lower mud layers by upwelling fluids.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2015026
2015-03-01
2024-04-26
Loading full text...

Full text loading...

References

  1. AbeggF. and AndersonA.L.1997. The acoustic turbid layer in muddy sediments of Eckernfoerde Bay, Western Baltic: methane concentration, saturation and bubble characteristics. Marine Geology137, 137–147.
    [Google Scholar]
  2. AndersonA.L. and BryantW.R.1990. Gassy sediment occurrence and properties: Northern Gulf of Mexico. Geo‐Marine Letters10, 209–220.
    [Google Scholar]
  3. AndersonA.L. and HamptonL.D.1980. Acoustics of gas‐bearing sediments II. The Journal of Acoustical Society of America67(6), 1880–1903.
    [Google Scholar]
  4. BadaG., HorváthF., DövényiP., SzafiánP., WindhofferG. and CloetinghS.2007. Present‐day stress field and tectonic inversion in the Pannonian basin. Global and Planetary Change58, 165–180.
    [Google Scholar]
  5. BadaG., SzafiánP., VinczeO., TóthT., FodorL., SpiessV.et al.2010. The neotectonic habitat of the eastern part of Lake Balaton and its broader environs: inferences from high‐resolution seismic profiling. Földtani Közlöny 140(4), 367–390 (in Hungarian).
    [Google Scholar]
  6. BalázsA., VisnovitzF., SpiessV., FeketeN., TóthZs., HámoriZ.et al.2013. Report on new seismic surveys at the Lake Balaton (2011–2012). Hungarian Geophysics54(2), 67–76 (in Hungarian).
    [Google Scholar]
  7. BallaZ. and DudkoA.1989. Large‐scale Tertiary strike‐slip displacements recorded in the structure of the Transdanubian Range. Geophysical Transactions35(1–2), 3–63.
    [Google Scholar]
  8. Baltic Gas
    Baltic Gas . 2012. Final scientific report, compiled by Bo Barker Jørgensen and Henrik Fossing [Online].
  9. BaltzerA., TessierB., NouzéH., BatesR., MooreC. and MenierD.2005. Seistec seismic profiles: a tool to differentiate gas signatures. Marine Geophysical Research26, 235–245.
    [Google Scholar]
  10. BudaiT., CsászárG., CsillagG., DudkoA., KoloszárL. and MajorosG.1999. Geology of the Balaton Highland. Explanation to the Geological Map of the Balaton Highland, 1: 50 000, pp. 257. Geological Institute of Hungary, Budapest, Hungary.
    [Google Scholar]
  11. CsermákK. and MátéF.2004. A Balaton Talaja (The soil of Lake Balaton), pp. 142. University of Veszprém, Faculty of Agriculture (in Hungarian).
    [Google Scholar]
  12. CsernyT.1987. Results of the actualgeological investigations of Lake Balaton. In: Annual Report for the Year 1985, pp. 334–365. Geological Institute of Hungary, Budapest, Hungary (in Hungarian).
    [Google Scholar]
  13. CsernyT.2002. Results of an investigation into Quaternary lacustrine sediments in Lake Balaton. Földtani Közlöny132(special edition), 193–213 (in Hungarian).
    [Google Scholar]
  14. CsernyT. and CorradaR.1989. Complex geological investigation of Lake Balaton (Hungary) and its results. Acta Geologica Hungarica32(1–2), 117–130.
    [Google Scholar]
  15. CsernyT. and Nagy‐BodorE.2000. Limnogeology of Lake Balaton (Hungary). In: Lake Basins Through Space and Time (AAPG Studies in Geology 46) (eds E.H.Gierlowski‐Kordesch and K.R.Kelts ), pp. 605–618.
    [Google Scholar]
  16. CsernyT., PrónayZ. and NeduczaB.2004. Re‐evaulation of earlier seismic measurements on Lake Balaton. In: Annual Report for the Year 2004, pp. 273–283. Geological Institute of Hungary, Budapest, Hungary (in Hungarian).
    [Google Scholar]
  17. CsordásK., HamarM. and VisnovitzT.1999. A mocsárgáz (the swamp gas). First student symposium for chemists, Pécs, Hungary. Expanded Abstract, pp. 243–247 (in Hungarian).
    [Google Scholar]
  18. DavyB.1992. Seismic reflection profiling on southern Lake Rotorua–evidence for gas‐charged lake floor sediments. Geothermics21, 97–108.
    [Google Scholar]
  19. DuarteH., PinheiroL.M., TeixeiraF.C. and MonteiroJ.H.2007. Highresolution seismic imaging of gas accumulations and seepage in the sediments of the Ria de Aveiro barrier lagoon (Portugal). Geo‐Marine Letters27, 115–126.
    [Google Scholar]
  20. FleischerP., OrsiT.H., RichardsonM.D. and AndersonA.L.2001. Distribution of free gas in marine sediments: a global overview. GeoMarine Letters21, 103–122.
    [Google Scholar]
  21. Garcia‐GilS., VilasF. and Garcia‐GarciaA.2002. Shallow gas features in incised‐valley fills (Ría de Vigo, NW Spain): a case study. Continental Shelf Research22, 2303–2315.
    [Google Scholar]
  22. GrenerczyG., SellaG.F., SteinS. and KenyeresA.2005. Tectonic implications of the GPS velocity field in the northern Adriatic region. Geophysical Research Letters32, L16311.
    [Google Scholar]
  23. GyalogL and HorváthI.2000. Geological Map of the Velence Hills. M=1:25 000.Geological Institute of Hungary, Budapest, Hungary.
    [Google Scholar]
  24. HaasJ., BudaiT., CsontosL., FodorL. and KonrádG.2010. Pre‐Cenozoic geological map of Hungary, 1:500 000.Geological Institute of Hungary, Budapest, Hungary.
    [Google Scholar]
  25. JuddA.G.2003. The global importance and context of methane escape from the seabed. Geo‐Marine Letters23, 147–154.
    [Google Scholar]
  26. JuddA.G. and HovlandM.1992. The evidence of shallow gas in marine sediments. Continental Shelf Research12, 1081–1095.
    [Google Scholar]
  27. JuddA.G. and HovlandM.2007. Seabed Fluid Flow, the Impact on Geology, Biology and Marine Environment, pp. 475. Cambridge University Press.
    [Google Scholar]
  28. LóczyL.1913. A Balaton Tudományos Tanulmányozásának Eredményei I. (Results of scientific studies of Lake Balaton I), pp. 617. Publication of the Balaton Committee of the Hungarian Geographical Society, Budapest, Hungary (in Hungarian).
    [Google Scholar]
  29. Martínez‐CarreñoN. and García‐GilS.2013. The Holocene gas system of the Ría de Vigo (NW Spain): Factors controlling the location of gas accumulations, seeps and pockmarks. Marine Geology344, 82–100.
    [Google Scholar]
  30. MathysM., ThiessenO., TheilenF. and SchmidtM.2005. Seismic characterization of gas‐rich near surface sediments in the Arkona Basin, Baltic Sea. Marine Geophysical Research26, 207–224.
    [Google Scholar]
  31. NémethV.2013. Balatoni vízi szeizmikus adatok feldolgozása (Processing of the multichannel seismic profiles from the 2012 survey at Lake Balaton). BSc thesis, Eötvös Loránd University, Hungary (in Hungarian).
    [Google Scholar]
  32. NovákD., KonczD., HorváthA., SzafiánP. and SztanóO.2010. A Pleistocene meander loop near Fonyód: remnants of channels on ultrahigh resolution seismic images, Lake Balaton. Földtani Közlöny140(4), 419–428 (in Hungarian).
    [Google Scholar]
  33. OrangeD., García‐GarcíaA., LorensonT., NittrouerC., MilliganT., MiserocchiS.et al.2005. Shallow gas and flood deposition on the Po Delta. Marine Geology222–223, 159–177.
    [Google Scholar]
  34. SacchiM., CsernyT., DövényiP., HorváthF., MagyariO., McGeeT.M.et al.1998. Seismic stratigraphy of the Late Miocene sequence beneath Lake Balaton, Pannonian basin, Hungary. Acta Geologica Hungarica41 (1), 63–88.
    [Google Scholar]
  35. SacchiM., HorváthF. and MagyariO.1999. Role of unconformity‐bounded units in the stratigraphy of continental records: a case study from the Late Miocene of the western Pannonian basin, Hungary. In: The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen (eds B.Durban , L.Jolivet , F.Horváth and M.Séranne ), pp. 357–390. Geological Society, London, Special Publications 156.
    [Google Scholar]
  36. SimpkinP.G. and DavisA.1993. For seismic profiling in shallow water, a novel receiver. Sea Technology34, 21–28.
    [Google Scholar]
  37. SztanóO., MagyarI., SzónokyM., LantosM., MüllerP., LenkeyL.et al.2013. Tihany Formation in the surroundings of Lake Balaton: type locality, depositional settings and stratigraphy. Földtani Közlöny143(1), 445–468 (in Hungarian).
    [Google Scholar]
  38. TaylorD.I.1992. Nearshore shallow gas around the U.K. coast. Continental Shelf Research12, 1135–1144.
    [Google Scholar]
  39. TóthZs.2009. Balatoni többcsatornás vízi szeizmikus mérések feldolgozása és értelmezése (Processing and interpretation possibilities of multichannel seismic data from Lake Balaton, Hungary). MSc thesis, Eötvös Loránd Unversity, Department of Geophysics and Space Sciences, Budapest (in Hungarian).
    [Google Scholar]
  40. TóthZs.2013. Seismo‐acoustic investigations of shallow free gas in the sediments of the Baltic Sea. PhD thesis, University of Bremen, Germany.
    [Google Scholar]
  41. TóthZs., TóthT., SzafiánP., HorváthA., HámoriZ., DombrádiE.et al.2010. Seismic investigations of Lake Balaton. Földtani Közlöny140(4), 355–366 (in Hungarian).
    [Google Scholar]
  42. TóthZs., SpiessV. and JensenJ.2014. Seismo‐acoustic signatures of shallow free gas in the Bornholm Basin, Baltic Sea. Continental Shelf Research88, 228–239.
    [Google Scholar]
  43. VargaG. and KravinszkajaG.2013. Hydrology report on water balance of Lake Balaton. Riscuri Si Catastrofe13(2), 63–74.
    [Google Scholar]
  44. VisnovitzF.2013. Késő‐miocén sekélyvízi deltalebeny épülés balatoni nagyfelbontású vízi szeizmikus szelvényeken (Progradation of the Late Miocene shallow water delta lobes in high resolution seismo‐acoustic profiles at Lake Balaton). PEME, VI. PhD conference, Budapest, Hungary, Expanded Abstracts, pp. 684–693 (in Hungarian).
    [Google Scholar]
  45. VisnovitzF. and HorváthF.2013a. Pleistocene sediments under the Lake Balaton’s mud layer. IX conference in the Carpathian basin on environmental sciences, Miskolc, Hungary, Expanded Abstract, pp. 230–236.
    [Google Scholar]
  46. VisnovitzF. and HorváthF.2013b. Balatonfő line in ultrahigh‐resolution: A neotectonic fault zone under Lake Balaton. XI. Meeting of the Central European Tectonic Studies Group, Várgesztes, Hungary, Expanded Abstracts, pp. 73–74.
    [Google Scholar]
  47. WilkensR.H. and RichardsonM.D.1998. The influence of gas bubbles on sediment acoustic properties: in situ laboratory, and theoretical results from Eckernförde Bay, Baltic Sea. Continental Shelf Research18, 1859–1892.
    [Google Scholar]
  48. ZólyomiB.1987. Degree and rate of sedimentation in Lake Balaton Pleistocene environment in Hungary. Contribution of the INQUA Hungarian National Committee of the XIIth INQUA Congress, Ottawa, Canada, Expanded Abstracts, pp. 57–79.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2015026
Loading
/content/journals/10.3997/1873-0604.2015026
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error