1887
Volume 64, Issue 2
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

We carried out a magnetotelluric field campaign in the South–East Lower Saxony Basin, Germany, with the main goal of testing this method for imaging regional Posidonia black shale sediments. Two‐dimensional inversion results of the magnetotelluric data show a series of conductive structures correlating with brine‐saturated sediments but also with deeper, anthracitic Westphalian/Namurian coals. None of these structures can be directly related with the Posidonia black shale, which appears to be generally resistive and therefore difficult to resolve with the magnetotelluric method. This assumption is supported by measurements of electrical resistivity on a set of Posidonia shale samples from the Hils syncline in the Lower Saxony basin. These rock samples were collected in shallow boreholes and show immature (0.53% Ro), oil (0.88% Ro), and gas (1.45% Ro) window thermal maturities. None of the black shale samples showed low electrical resistivity, particularly those with oil window maturity show resistivity exceeding 104 Ωm. Moreover, we could not observe a direct correlation between maturity and electrical resistivity; the Harderode samples showed the highest resistivity, whereas the Haddessen samples showed the lowest. A similar trend has been seen for coals in different states of thermal maturation. Saturation of the samples with distilled and saline water solutions led to decreasing electrical resistivity. Moreover, a positive correlation of electrical resistivity with porosity is observed for the Wickensen and Harderode samples, which suggests that the electrical resistivity of the Posidonia black shale is mainly controlled by porosity.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12288
2015-09-28
2024-03-29
Loading full text...

Full text loading...

References

  1. Adriasola‐MunozY., LittkeR. and BrixM.R.2007. Fluid systems and basin evolution of the western Lower Saxony Basin, Germany. Geofluids7, 335–55.
    [Google Scholar]
  2. BahrK.1988. Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion. Journal of Geophysics62, 119–127.
    [Google Scholar]
  3. BaldschuhnR., BinotF., FleigS. and KockelF.2001. Geotektonischer Atlas von Nordwest‐Deutschland und dem deutschen Nordsee‐Sektor. Hannover.
    [Google Scholar]
  4. BartensteinH., TeichmüllerM. and TeichmüllerR.1971. Die Umwandlung der organischen Substanz im Dach des Bramscher Massivs. Fortschritte in der Geologie von Rhein‐ land und Westfalen18, 501–538.
    [Google Scholar]
  5. BeckenM. and BurkhardtH.2004. An ellipticity criterion for magnetotelluric tensor analysis. Geophysical Journal International159, 69–82.
    [Google Scholar]
  6. BeckenM., RitterO., ParkS.K., BedrosianP.A. and WeckmannU.2008. A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California. Geophysical Journal International173, 718–732.
    [Google Scholar]
  7. BerdichevskiM.N.1960. Principles of magnetoteluric profiling theory. Journal of Applied Physics28, 70–91.
    [Google Scholar]
  8. BerdichevskiM.N.1964. Linear relationships in the magnetotelluric field. Journal of Applied Physics38, 99–108.
    [Google Scholar]
  9. BernardS., BrownL., HorsfieldB., SchulzH.‐M., WirthR., SchreiberA.et al. 2013. FIB‐SEM and TEM Investigations of an Organic‐rich shale Maturation Series from the Lower Toarcian Posidonia Shale, Germany: Nanoscale Pore System and Fluid‐rock Interactions. In: Electron Microscopy of Shale Hydrocarbon Reservoirs: AAPG Memoir 102. (eds W.Camp , E.Diaz , and B.Wawak ), pp. 53–66.
    [Google Scholar]
  10. BernardS., HorsfieldB., SchulzH.‐M., WirthR., SchreiberA. and SherwoodN.2012. Geochemical evolution of organic‐rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany). Marine and Petroleum Geology31, 70–89.
    [Google Scholar]
  11. BetzD., FührerF., GreinerG. and PleinE.1987. Evolution of the Lower Saxony Basin. Tectonophysics137, 127–70.
    [Google Scholar]
  12. BranchT., RitterO., WeckmannU., SachsenhoferR. and SchillingF.2007. The Whitehill formation: a high conductivity marker in the Karoo Basin. South African Journal of Geology110, 465–476.
    [Google Scholar]
  13. BuehnemannJ., HenkeC.H., MuellerC., KriegerM.H., ZerilliA. and StrackK.M.2002. Bringing complex salt structures into focus – A novel integrated approach. 72nd SEG annual meeting, Expanded Abstracts, 446–449.
  14. BrunsB., di PrimioR., BernerU. and LittkeR.2013. Petroleum system evolution in the inverted Lower Saxony Basin, northwest Germany: a 3D basin modeling study. Geofluids13(2), 246–271.
    [Google Scholar]
  15. ChaveA.D., ThomsonD.J. and AnderM.E.1987. On the robust estimation of power spectra, coherences and transfer functions. Journal of Geophysical Research92, 633–648.
    [Google Scholar]
  16. ChenX.2008. Filterung von geophysikalischen Zeitreihen mit periodisch auftretenden multifrequenten Störsignalen. Diploma thesis, Technical University of Berlin.
    [Google Scholar]
  17. EgbertG. and BookerJ.1986. Robust estimation of geomagnetic transfer functions. Geophysical Journal of Royal Astronomical Society87, 173–194.
    [Google Scholar]
  18. GerlingP., KockelF. and KrullP.1999. Das Kohlenwasserstoff–Potential des Pre‐westfals im norddeutschen Becken – Eine Synthese. DGMK Research Report 433. Hamburg.
    [Google Scholar]
  19. HoffmannN., JödickeH. and HoreshschiL.2005. Regional distribution of the Lower Carboniferous culm and carboniferous limestone facies in the North German Basin: derived from magnetotelluric soundings. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften156(2), 323–339.
    [Google Scholar]
  20. HoffmannN., JödickeH. and HoreshschiL.2008. The contribution of magnetotellurics to an improved understanding of the geological evolution of the North German Basin – review and new results. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften159(4), 591–606.
    [Google Scholar]
  21. HorsfieldB., SchulzH.M., AplinA., DoornenbalH., MorettiI., LorantF.et al. 2010. Shale gas research: the way forward for Europe. Oilfield Technology3(2), 14–18.
    [Google Scholar]
  22. IOC, IHO, BODC
    IOC, IHO, BODC , 2003. Centenary Edition of the GEBCO Digital Atlas. Published on CD–ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans, British Oceanographic Data Centre, Liverpool, U.K.
  23. JonesA.G., ChaveA.D., AuldD., BahrK. and EgbertG.1989. A comparison of techniques for magnetotelluric response function estimation. Journal of Geophysical Research: Solid Earth94(B10), 14201–14213.
    [Google Scholar]
  24. KlaverJ., DesboisG., UraiJ.L. and LittkeR.2012. BIB‐SEM study of the pore morphology in early mature Posidonia Shale from the Hils area, Germany. International journal of Coal Geology103, 12–25.
    [Google Scholar]
  25. KochG. and ArnemannH.1975. Die Inkohlung in Gesteinen des Rhät und Lias im südlichen Nordwestdeutschland. Geologisches JahrbuchA29, 45–55.
    [Google Scholar]
  26. KockelF., WehnerH. and GerlingP.1994. Petroleum systems of the Lower Saxony basin, Germany. In: The Petroleum System – From Source to Trap (eds MagoonL.B. and DowW.G. ), pp. 573–586. American Association of Petroleum Geologists.
    [Google Scholar]
  27. KringsT.2007. The influence of robust statistics, remote reference, and a criterion based on horizontal magnetic transfer functions on MT data processing. Diploma thesis, WWU Münster – GFZ Potsdam.
    [Google Scholar]
  28. LeythaeuserD., LittkeR., RadkeM. and SchaeferR.1988. Geochemical effects of petroleum migration and expulsion from Toarcian source rocks in the Hils syncline area, NW‐Germany. Organic Geochemistry13, 489–502.
    [Google Scholar]
  29. LittkeR., BakerD.R. and LeythaeuserD.1988. Microscopic and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rocks of different maturities. Organic Geochemistry13, 549–59.
    [Google Scholar]
  30. LittkeR. and RullkötterJ.1987. Mikroskopische und makroskopische Unterschiede zwischen Profilen unreifen und reifen Posidonienschiefers aus der Hilsmulde. Facies17, 171–180.
    [Google Scholar]
  31. LittkeR., LeythaeuserD., RullkotterJ. and BakerD.R.1991. Keys to the depositional history of the Posidonia Shale (Toarcian) in the Hils syncline, northern Germany. Geological Society of London, Special Publications58(1), 311–333.
    [Google Scholar]
  32. JarvieD., HillR., RubleT. and PollastroR.2007. Unconventional shale‐gas systems: The Mississipian Barnett Shale of north‐central Texas as one model for thermogenic shale‐gas assessment. AAPG Bulletin91(4), 475–499.
    [Google Scholar]
  33. JödickeH.1992. Water and graphite in the earth's crust – An approach to interpretation of conductivity models. Surveys in Geophysics13, 381–407.
    [Google Scholar]
  34. MannU.1987. Veränderungen von Porosität und Porengröße eines Erdölmuttergesteins in Annäherung an einen Intrusivkörper. Facies17, 181–188.
    [Google Scholar]
  35. MannU. and MüllerP.J.1988. Source rock evaluation by well log analysis (lower Toarcian, Hils syncline). Organic Geochemistry13, 109–119.
    [Google Scholar]
  36. MaystrenkoY., BayerU., BrinkH.J. and LittkeR.2008. The Central European Basin system – an overview. Dynamics of Complex Intracontinental Basins, pp. 15–34. Springer–Verlag.
    [Google Scholar]
  37. MaystrenkoY., BayerU. and Scheck‐WenderothM.2010. Structure and Evolution of the Central European Basin System According to 3D Modelling. DGMK Research Report 577–2/2. Hamburg.
    [Google Scholar]
  38. MitchellJ.K. and SogaK.1993. Fundamentals of Soil Behaviour. Wiley. ISBN: 0471463027.
    [Google Scholar]
  39. MunozG., RitterO. and MoeckI.2010. A target‐oriented magnetotelluric inversion approach for characterizing the low enthalpy Groß Schönebeck geothermal reservoir. Geophysical Journal International183(3), 1199–1215.
    [Google Scholar]
  40. OlhoeftG.R.1981. Electrical properties of rocks. In: Physical Properties of Rocks and Minerals (eds Y.S. Touloukian, W.R. Judd and R.F. Roy), pp. 257–330. McGraw‐Hill, New York, USA.
    [Google Scholar]
  41. ParkhomenkoE.1967. Electrical Properties of Rocks. Plenum Press, New York, USA. ISBN 9781461586111.
    [Google Scholar]
  42. PetmeckyS.P., MeierL., ReiserH. and LittkeR.1999. High thermal maturity in the Lower Saxony Basin: intrusion or deep burial? Tectonophysics304, 317–44.
    [Google Scholar]
  43. PlaumannS.1983. Die Schwerekarte 1:500.000 der Bundesrepublik Deutschland (Bouguer‐Anomalien). Bundesanstalt für Geowissenschaften und Rohstoffe und den Geologischen Landesämtern in der Bundesrepublik Deutschland.
    [Google Scholar]
  44. TeichmüllerH., TeichmüllerR. and WeberR.1979. Inkohlung und Illit‐Kristallinität. Vergleichende Untersuchungen im Mesozoikum und Paläozoikum von Westfalen. Fortschr. Geol. Rheinld. U. Westf.27, 201–276.
    [Google Scholar]
  45. TikhonovA.N. and ArseninV.Y.1977. Methods for Solving Ill‐Posed Problems. Nauka, Moscow.
    [Google Scholar]
  46. TikhonovA.N. and BerdichevskiM.N.1966. Experience in the use of magnetotelluric method to study geological structure of sedimentary basins. Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli 2, 34–41.
  47. ToporetsS.A.1958. On the effect of metamorphism on the electrical and elastic properties of commercial coals. Doklady Akademii nauk SSSR140(2).
    [Google Scholar]
  48. RitterO., JungeA. and DawesG.J.K.1998. New equipment and processing for magnetotelluric remote reference observations. Geophysical Journal International132(3), 535–548.
    [Google Scholar]
  49. RaabS.1998. Role of sulphur and carbon in the electrical conductivity of the middle crust. Journal of Geophysical Research13, 9681–9689.
    [Google Scholar]
  50. RodiW. and MackieR.L.2001. Nonlinear conjugate gradients algorithm for 2‐D magnetotelluric inversions. Geophysics66, 174–187.
    [Google Scholar]
  51. RouzaudJ.N. and A.Oberlin1984. Contribution of high resolution transmission electron microscopy (TEM) to organic materials: Characterization and interpretation of their reflectance. In: Thermal Phenomena in Sedimentary Basins, pp. 127–134. Teehnip, Paris, France.
    [Google Scholar]
  52. RullkötterJ. and MarziR.1988. Natural and artificial maturation of biological markers in a Toarcian shale from northern Germany. Organic Geochemistry13, 639–645.
    [Google Scholar]
  53. RullkötterJ., LeythaeuserD., HorsfieldB., LittkeR., MannU., MüllerP.et al.1988. Organic matter maturation under the influence of a deep intrusive heat source: a natural experiment for quantitation of hydrocarbon generation and expulsion from a petroleum source rock (Toarcian shale, northern Germany). Organic Geochemistry13, 847–856.
    [Google Scholar]
  54. SchäferA., HouptL., BrasseH., HoffmannN. and EMTESZ Working Group2011. The North German Conductivity Anomaly revisited. Geophysical Journal International187(1), 85–98.
    [Google Scholar]
  55. SchmuckerU.1970. Anomalies of geomagnetic variations in the southwestern United States. Bulletin of the Scripps Institution of Oceanography13, 1–165.
    [Google Scholar]
  56. SchuyerJ. and van KrevelenD.W.1955. Chemical Structure and Properties of Coal. IX – Semiconductivity of High Rank Coals. Fuel34, 213–218.
    [Google Scholar]
  57. SenglaubY., BrixM.R., AdriasolaA.C., and LittkeR.2005. New information on the thermal history of the southwestern Lower Saxony Basin, northern Germany, based on fission track analysis. International Journal of Earth Sciences94, 876–96.
    [Google Scholar]
  58. VandenbrouckeM. and LargeauC.2007. Kerogen origin, evolution and structure. Organic Geochemistry38(5), 719–833.
    [Google Scholar]
  59. WeckmannU., JungA., BranchT. and RitterO.2007. Comparison of electrical conductivity structures and 2D magnetic modelling along two profiles crossing the Beattie magnetic anomaly. South African Journal of Geology110, 449–464.
    [Google Scholar]
  60. WeckmannU., MaguniaA. and RitterO.2005. Effective noise separation for magnetotelluric single site data processing using a frequency domain selection scheme. Geophysical Journal International161, 456–468.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12288
Loading
/content/journals/10.1111/1365-2478.12288
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error