1887
Volume 64, Issue 3
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

This paper presents a case study of mapping basement structures in the northwestern offshore of Abu Dhabi using high‐resolution aeromagnetic data. Lineament analysis was carried out on the derivatives of the reduced‐to‐the‐pole magnetic data, along with supporting information from published geologic data. The lineament analysis suggests three well‐defined basement trends in the north–south, northeast–southwest, and northwest–southeast directions. The reduced‐to‐the‐pole magnetic data reveal high positive magnetic anomalies hypothesized to be related to intra‐basement bodies in the deep seated Arabian Shield. Depth to basement was estimated using spectral analysis and Source Parameter Imaging techniques. The spectral analysis suggests that the intruded basement blocks are at the same average depth level (around 8.5 km). The estimated Source Parameter Imaging depths from gridded reduced‐to‐the‐pole data are ranged between 4 km and 12 km with a large depth variation within small distances. These estimated depths prevent a reliable interpretation of the nature of the basement relief. However, low‐pass filtering of the horizontal local wavenumber data across two profiles shows that the basement terrain is characterized by a basin‐like structure trending in the northeast–southwest direction with a maximum depth of 10 km. Two‐dimensional forward magnetic modelling across the two profiles suggests that the high positive magnetic anomalies over the basin could be produced by intrusion of mafic igneous rocks with high susceptibility values (0.008 to 0.016 SI.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12266
2015-09-01
2024-04-26
Loading full text...

Full text loading...

References

  1. Al‐HusseiniM.I.2000. Origin of the Arabian Plate structures: Amar collision and Najd Rift. GeoArabia5(4), 527–542.
    [Google Scholar]
  2. Al‐HusseiniM.I. and MatthewsR.K.2010. Middle East geologic time scale 2010: Calibrating mid‐Permian to early Triassic Khuff sequences with orbital clocks. GeoArabia15(3),171–206.
    [Google Scholar]
  3. AliM.Y., WattsA.B. and FaridA.2014. Gravity anomalies of the United Arab Emirates: Implications for basement structures and infra‐Cambrian salt distribution. GeoArabia19(1), 85–112.
    [Google Scholar]
  4. AlsharhanA.S. and SalahM.G.1997. Tectonic implications of diapirism on hydrocarbon accumulation in the United Arab Emirates. Bulletin of Canadian Petroleum Geology45, 279–296.
    [Google Scholar]
  5. BechennecF., Le MetourJ., RabuD., Bourdillon‐de‐GrissacC., de WeverP., BeurrierM.et al.1990. The Hawasina Nappes: stratigraphy, palaeogeography and structural evolution of a fragment of the South‐Tethyan passive continental margin. Geological Society Special Publications49, 213–223.
    [Google Scholar]
  6. BeydounZ.R.1991. Arabian Plate Hydrocarbon Geology and Potential: A Plate Tectonic Approach. American Association of Petroleum Geologists.
  7. BlakelyR.J.1995. Potential Theory in Gravity and Magnetic Applications. Cambridge University Press.
  8. BlakelyR.J. and SimpsonR.W.1986. Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics51, 1494–1498.
    [Google Scholar]
  9. BlendingerW., Van VlietA. and ClarkeM.W.H.1990. Updoming, rifting and continental margin development during the late Palaeozoic in northern Oman. Geological Society Special Publications49, 27–37.
    [Google Scholar]
  10. EdgellH.S.1990. Basement tectonics of Saudi Arabia as related to oil field structures. Proceedings of the International Conference on Basement Tectonics9, 169–193.
    [Google Scholar]
  11. FediM., QuartaT. and De SantisA.1997. Improvements to the Spector and Grant method of source depth estimation using the power law decay of magnetic field power spectra. Geophysics62, 1143–1150.
    [Google Scholar]
  12. FlintR.B., LeemingP., McKennaK.F., PerryA. and RankinL.R.1998. Final Geological Report of the Haushi‐Huqf‐Masirah Area: Geophysical Mapping Program 1995–1998. Report for the Ministry of Commerce and industry, Directorate General of Minerals, Sultanate of Oman.
  13. FlorioG., FediM. and PaštekaR.2014. On the estimation of the structural index from low‐pass filtered magnetic data. Geophysics79, J67–J80.
    [Google Scholar]
  14. GassI.G., RiesA.C., ShackletonR.M. and SmewingJ.D.1990. Tectonics, geochronology and geochemistry of the Precambrian rocks of Oman. In: The Geology and Tectonics of the Oman Region, Special Publication no. 49 (eds A.H.F.Robertson , M.P.Searle and A.C.Ries ), pp. 585–599.
    [Google Scholar]
  15. GlennieK.W., BoeufM.G., ClarkeM.W.H., Moody‐StuartM., PilarW.F.H. and ReinhardtB.M.1974. The Geology of the Oman Mountains. Verhandelingen van het Koninklijk Nederlands Geologisch Mijnbouwkundig Genootschap.
    [Google Scholar]
  16. HospersJ. and RathoreJ.S.1984. Interpretation of aeromagnetic data from the Norwegian sector of the North Sea. Geophysical Prospecting32, 929–942.
    [Google Scholar]
  17. HusseiniM.I.1988. The Arabian Infracambrian extensional system. Tectonophysics148, 93–103.
    [Google Scholar]
  18. HusseiniM.I.1989. Tectonic and deposition model of late Precambrian‐Cambrian Arabian and adjoining plates. American Association of Petroleum Geologists Bulletin73, 1117–1131.
    [Google Scholar]
  19. HusseiniM.I. and HusseiniS.I.1990. Origin of the Infracambrian Salt Basins of the Middle East. Geological Society, London, Special Publications50, 279–292.
    [Google Scholar]
  20. KhattabM.M.1985. Interpretation of magnetic and gravity surveys in the southern Arabian Gulf, the Strait of Hormuz, and the northwesternmost Gulf of Oman: Implications of pre‐Permian basement tectonics. Marine Geology123, 105–116.
    [Google Scholar]
  21. KonertG., AfifiA.M., Al‐HajriS.i.A. and DrosteH.J.2001. Paleozoic stratigraphy and hydrocarbon habitat of the Arabian Plate. GeoArabia6, 407–442.
    [Google Scholar]
  22. LoosveldR.J.H., BellA. and TerkenJ.J.M.1996. The tectonic evolution of interior Oman. GeoArabia1, 28–51.
    [Google Scholar]
  23. McPheeD.K., LangenheimV.E., WellsR.E. and BlakelyR.J.2014. Tectonic evolution of the Tualatin basin, northwest Oregon, as revealed by inversion of gravity data. Geosphere10, 264–275.
    [Google Scholar]
  24. MillerH.G. and SinghV.1994. Potential field tilt – A new concept for location of potential field sources. Journal of Applied Geophysics32, 213–217.
    [Google Scholar]
  25. NabighianM.N., GrauchV.J.S., HansenR.O., LaFehrT.R., LiY., PeirceJ.W.et al. 2005. The historical development of the magnetic method in exploration. Geophysics70, 33ND–61ND.
    [Google Scholar]
  26. NehligP., Genna. A., AsfiraneF., DubreuilN., Guerrot. C., EberleJ.M.et al. 2002. A review of the Pan‐African evolution of the Arabian Shield. GeoArabia7, 103–124.
    [Google Scholar]
  27. NolanS.C., SkeltonP.W., ClissoldB.P. and SmewingJ.D.1990. Maastrichtian to early Tertiary stratigraphy and palaeogeography of the central and northern Oman Mountains. Geological Society Special Publications49, 495–519.
    [Google Scholar]
  28. PattonT.L. and O'ConnorS.J.1988. Cretaceous flexural history of northern Oman Mountain foredeep, United Arab Emirates. American Association of Petroleum Geologists Bulletin72, 797–809.
    [Google Scholar]
  29. PhillipsJ.D., HansenR.O. and BlakelyR.J.2007. The use of curvature in potential field data. Exploration Geophysics38, 111–119.
    [Google Scholar]
  30. RicateauR. and RicheP.H.1980. Geology of the Musandam Peninsula (Sultanate of Oman) and its surroundings. Journal of Petroleum Geology3, 139–152.
    [Google Scholar]
  31. RobertsonA.1987. The transition from a passive margin to an Upper Cretaceous foreland basin related to ophiolite emplacement in the Oman Mountains. Geological Society of America Bulletin99, 633–653.
    [Google Scholar]
  32. RubanD.A., Al‐HusseiniM.I. and IwasakiY.2007. Review of Middle East Paleozoic plate tectonics. GeoArabia12, 35–55.
    [Google Scholar]
  33. SalemA., RavatD., SmithR. and UshijimaK.2005. Interpretation of magnetic data using an enhanced local wavenumber (ELW) method. Geophysics70, L7–L12.
    [Google Scholar]
  34. SalemA. and SmithR.2005. Depth and structural index from the normalized local wavenumber of 2D magnetic anomalies. Geophysical Prospecting53, 83–89.
    [Google Scholar]
  35. SearleM.P.1988a. Structure of the Musandam culmination (Sultanate of Oman and United Arab Emirates) and the Straits of Hormuz syntaxis. Journal of the Geological Society145, 831–845.
    [Google Scholar]
  36. SearleM.P.1988b. Thrust tectonics of the Dibba Zone and the structural evolution of the Arabian continental margin along the Musandam Mountains (Oman and United Arab Emirates). Journal of the Geological Society of London145, 43–53.
    [Google Scholar]
  37. SearleM.P. and GrahamG.M.1982. "Oman Exotics"–Oceanic carbonate build‐ups associated with the early stages of continental rifting. Geology10, 43–49.
    [Google Scholar]
  38. SearleM.P., JamesN.P., CalonT.J. and SmewingJ.D.1983. Sedimentological and structural evolution of the Arabian continental margin in the Musandam Mountains and Dibba Zone, United Arab Emirates. Geological Society of America Bulletin94, 1381–1400.
    [Google Scholar]
  39. SearleM.P., WarrenC.J., WatersD.J. and ParrishR.R.2004. Structural evolution, metamorphism and restoration of the Arabian continental margin, Saih Hatat region, Oman Mountains. Journal of Structural Geology26, 451–473.
    [Google Scholar]
  40. SharlandP.R., ArcherR., CaseyD.M., DaviesR.B., HallS.H., HewardA.P.et al. 2001. Arabian Plate sequence stratigraphy. GeoArabia Special Publication2, 371–373.
    [Google Scholar]
  41. SkeltonP.W., NolanS.C. and ScottR.W.1990. The Maastrichtian transgression onto the northwestern flank of the Proto‐Oman Mountains; sequences of rudist‐bearing beach to open shelf facies. Geological Society Special Publications49, 521–547.
    [Google Scholar]
  42. SpectorA. and GrantF.S.1970. Statistical models for interpreting aeromagnetic data. Geophysics35, 293–302.
    [Google Scholar]
  43. ThompsonD.T.1982. EULDPH: A new technique for making computer assisted depth estimates from magnetic data. Geophysics47, 31–37.
    [Google Scholar]
  44. ThurstonJ.B. and SmithR.S.1997. Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI (TM) method. Geophysics62, 807–813.
    [Google Scholar]
  45. TiltonG.R., HopsonC.A. and WrightJ.E.1981. Uranium‐lead isotopic ages of the Samail ophiolite, Oman, with applications to Tethyan Ocean ridge tectonics. Journal of Geophysical Research86, 2763–2775.
    [Google Scholar]
  46. TippitP.R. and PessagnoE.A.1979. Age of the Samail Ophiolite based on radiolarian biostratigraphy. Eos60, 962–962.
    [Google Scholar]
  47. WarrenC.J., ParrishR.R., WatersD.J. and SearleM.P.2005. Dating the geologic history of Oman's Semail Ophiolite: insights from U/Pb geochronology. Contributions to Mineralogy and Petrology150, 403–422.
    [Google Scholar]
  48. ZieglerM.A.2001. Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia6, 445–504.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12266
Loading
/content/journals/10.1111/1365-2478.12266
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error