1887
Volume 64, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

We explore the link between basin modelling and seismic inversion by applying different rock physics models. This study uses the E‐Dragon II data in the Gulf of Mexico. To investigate the impact of different rock physics models on the link between basin modelling and seismic inversion, we first model relationships between seismic velocities and both (1) porosity and (2) effective stress for well‐log data using published rock physics models. Then, we build 1D basin models to predict seismic velocities derived from basin modelling with different rock physics models, in a comparison with average sonic velocities measured in the wells. Finally, we examine how basin modelling outputs can be used to aid seismic inversion by providing constraints for the background low‐frequency model. For this, we run different scenarios of inverting near angle partial stack seismic data into elastic impedances to test the impact of the background model on the quality of the inversion results. The results of the study suggest that the link between basin modelling and seismic technology is a two‐way interaction in terms of potential applications, and the key to refine it is establishing a rock physics models that properly describes changes in seismic signatures reflecting changes in rock properties.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12343
2015-12-02
2024-04-18
Loading full text...

Full text loading...

References

  1. AndersonJ.W. and BogaardsM.A.2000. Quantifying fluid prediction using angle‐dependent inversion measured against log fluid substitutions. Offshore Technology Conference.
    [Google Scholar]
  2. AthyL.F.1930. Density, porosity and compaction of sedimentary rocks. American Association of Petroleum Geologists Bulletin14, 1–24.
    [Google Scholar]
  3. AvsethP., DvorkinJ., MavkoG. and RykkjeJ.2000. Rock physics diagnostics of North Sea sands: Link between microstructure and seismic properties. Geophysical Research Letters27, 2761–2764.
    [Google Scholar]
  4. AvsethP., MukerjiT. and MavkoG.2005. Quantitative Seismic Interpretation. Cambridge University Press.
    [Google Scholar]
  5. BrownA.R.2010. Interpretation of Three‐Dimensional Seismic Data, 7th edn. Tulsa, OK: American Association of Petroleum Geologists Memoir42.
    [Google Scholar]
  6. CastagnaJ.P., BatzleM.L. and EastwoodR.L.1985. Relationships between compressional‐wave and shear‐wave velocities in clastic silicate rocks. Geophysics50, 571–581.
    [Google Scholar]
  7. CastagnaJ.P., BatzleM.L. and KanT.K.1993. Rock physics—The link between rock properties and AVO response. In: Offset‐Dependent Reflectivity—Theory and Practice of AVO Analysis: Investigations in Geophysics Series, Vol. 8 (eds J.P.Castagna and M.M.Backus ), pp. 135–171. Society of Exploration Geophysicists.
    [Google Scholar]
  8. CerneyB. and BartelD.C.2007. Uncertainties in low‐frequency acoustic impedance models. The Leading Edge26(1), 74–87.
    [Google Scholar]
  9. ConnollyP.1999. Elastic impedance. The Leading Edge18, 438–452.
    [Google Scholar]
  10. DragosetB. and GabitzschJ.2007. Introduction to this special section: Low frequency seismic. The Leading Edge26(1), 34–35.
    [Google Scholar]
  11. DuttaN., DeoB., LiuY., RamaniK., KapoorJ. and VighD.2015. Pore‐pressure‐constrained, rock‐physics‐guided velocity model building method: Alternate solution to mitigate subsalt geohazard. Interpretation3, SE1–SE11.
    [Google Scholar]
  12. DuttaT., MavkoG., MukerjiT. and LaneT.2009. Compaction trends for shale and clean sandstone in shallow sediments, Gulf of Mexico. The Leading Edge28(5), 590–596.
    [Google Scholar]
  13. DvorkinJ., NurA. and YinH.1994. Effective properties of cemented granular material. Mechanics of Materials18, 351–366.
    [Google Scholar]
  14. DvorkinJ. and NurA.1996. Elasticity of high‐porosity sandstones: Theory for two North Sea datasets . Geophysics61, 1363–1370.
    [Google Scholar]
  15. EatonB.A.1975. The equation for geopressure prediction from well logs. SPE 5544.
    [Google Scholar]
  16. GallowayW.E.2005. Gulf of Mexico Basin depositional record of Cenozoic North American drainage basin evolution. International Association of Sedimentologists Special Publication35, 409–423.
    [Google Scholar]
  17. GallowayW.E.2008. Depositional evolution of the Gulf of Mexico sedimentary basin. In: Sedimentary Basins of the World, Vol. 5 (ed K.J.Hsu ); The Sedimentary Basins of the United States and Canada (ed A.D. Miall), pp. 505–549. Elsevier: The Netherlands.
    [Google Scholar]
  18. GassmannF.1951. Über die Elastizität poröser Medien. Vierteljahrs‐schrift der Naturforschenden Gesellschaft in Zürich, 96, 1–23.
  19. HanD.1986. Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments . PhD dissertation, Stanford University, USA.
  20. HantschelT. and KaueraufA.2009. Fundamentals of Basin Modeling. Heidelberg: Springer‐Verlag, 425 pp.
    [Google Scholar]
  21. JarvisK., FolkersA. and MesdagP.2004. Reservoir characterization of the Flag sandstone, Barrow sub‐basin, using an integrated, multiparameter seismic AVO inversion technique. The Leading Edge23, 798–800.
    [Google Scholar]
  22. MindlinR.D.1949. Compliance of elastic bodies in contact. Transactions of the American Society of Mechanical Engineers 71, A‐259.
  23. MurphyW.F.1982. Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials . PhD thesis, Stanford University, USA.
  24. PetersK.E.2009. Getting Started in Basin and Petroleum System Modeling. American Association of Petroleum Geologists, CD‐ROM #16, AAPG Data pages.
  25. PetmeckyR.S., AlbertinM.L. and BurkeN.2009. Improving sub‐salt imaging using 3D basin model derived velocities. Marine and Petroleum Geology26, 457–463.
    [Google Scholar]
  26. RielP.V. and BerkhoutA.J.1985. Resolution in seismic trace inversion by parameter estimation. Geophysics50, 1440–1455.
    [Google Scholar]
  27. Reuss, A.1929. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik9, 49–58.
    [Google Scholar]
  28. RussellB. and HampsonD.1991. Comparison of poststack inversion method. 61st annual international SEG meeting, Expanded Abstracts, 876–878.
  29. RussellB.2005. Strata workshop: Theory and exercises in seismic inversion and AVO, unpublished lecture notes.
  30. SayersC.M., JohnsonG.M. and DenyerG.2002. Predrill pore‐pressure prediction using seismic data. Geophysics67, 1286–1292.
    [Google Scholar]
  31. TarantolaA.1987. Inverse Problem Theory. Elsevier Science, 630 pp.
    [Google Scholar]
  32. TerzaghiK.1923. Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der Hydrodynamischen Spannungsercheinungen. Akademie der Wissenschaften in Wein, Sitzungsberichte, Mathematisch‐Naturwissenschaftliche Klasse, Part IIa, 132(3/4), 125–128.
    [Google Scholar]
  33. TerzaghiK.1943. Theoretical Soil Mechanics. New York: John Wiley & Sons, Inc., 510 pp.
    [Google Scholar]
  34. ZoeppritzK.1919. On the reflection and penetration of seismic waves through unstable layers. Erdbebenwellen VIII B, Göttinger Nachrichten, 66–84.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12343
Loading
/content/journals/10.1111/1365-2478.12343
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Basin modelling; Rock physics; Seismic inversion

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error