1887
Volume 64, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

We study the azimuthally dependent hyperbolic moveout approximation for small angles (or offsets) for quasi‐compressional, quasi‐shear, and converted waves in one‐dimensional multi‐layer orthorhombic media. The vertical orthorhombic axis is the same for all layers, but the azimuthal orientation of the horizontal orthorhombic axes at each layer may be different. By starting with the known equation for normal moveout velocity with respect to the surface‐offset azimuth and applying our derived relationship between the surface‐offset azimuth and phase‐velocity azimuth, we obtain the normal moveout velocity versus the phase‐velocity azimuth. As the surface offset/azimuth moveout dependence is required for analysing azimuthally dependent moveout parameters directly from time‐domain rich azimuth gathers, our phase angle/azimuth formulas are required for analysing azimuthally dependent residual moveout along the migrated local‐angle‐domain common image gathers. The angle and azimuth parameters of the local‐angle‐domain gathers represent the opening angle between the incidence and reflection slowness vectors and the azimuth of the phase velocity ψ at the image points in the specular direction. Our derivation of the effective velocity parameters for a multi‐layer structure is based on the fact that, for a one‐dimensional model assumption, the horizontal slowness and the azimuth of the phase velocity ψ remain constant along the entire ray (wave) path. We introduce a special set of auxiliary parameters that allow us to establish equivalent effective model parameters in a simple summation manner. We then transform this set of parameters into three widely used effective parameters: fast and slow normal moveout velocities and azimuth of the slow one. For completeness, we show that these three effective normal moveout velocity parameters can be equivalently obtained in both surface‐offset azimuth and phase‐velocity azimuth domains.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12340
2015-11-06
2024-04-19
Loading full text...

Full text loading...

References

  1. Al‐DajaniA., TsvankinI. and ToksozN.1998. Nonhyperbolic reflection moveout for azimuthally anisotropic media. 68th SEG meeting, New Orleans, LA, Expanded Abstracts, 1479–1482.
  2. BakulinA., GrechkaV. and TsvankinI.2000. Estimation of fracture parameters from reflection seismic data – Part II: HTI Fractured models with orthorhombic symmetry. Geophysics65, 1803–1817.
    [Google Scholar]
  3. BakulinA., GrechkaV. and TsvankinI.2002. Seismic inversion for the parameters of two orthogonal fracture sets in a VTI background medium. Geophysics67, 292–299.
    [Google Scholar]
  4. BrownR., CrampinS. and GallantE.1992. Modeling shear‐wave singularities in an orthorhombic medium. CREWES Research Report4, 19‐1–19‐14.
    [Google Scholar]
  5. CaryP. and ZhangC.2010. Optimizing converted‐wave prestack time migration. GeoCanada 2010, Calgary, AB, Extended Abstracts.
  6. ČervenýV.2001. Seismic Ray Theory. Cambridge University Press. ISBN 978–0521366717.
    [Google Scholar]
  7. ČervenýV., MolotkovI. and PsencikI.1977. Ray Method in Seismology. Charles University Press, Prague.
    [Google Scholar]
  8. CrampinS.1981. A review of wave motion in anisotropic and cracked elastic‐media. Wave Motion3, 343–391.
    [Google Scholar]
  9. CrampinS.1991. Effects of point singularities on shear‐wave propagation in sedimentary basins. Geophysical Journal International107, 531–543.
    [Google Scholar]
  10. GrechkaV.2015. Shear‐wave group‐velocity surfaces in low‐symmetry anisotropic media. Geophysics80, C1–C7.
    [Google Scholar]
  11. GrechkaV., PechA. and TsvankinI.2005. Parameter estimation in orthorhombic media using multicomponent wide‐azimuth reflection data. Geophysics70, D1–D8.
    [Google Scholar]
  12. GrechkaV. and TsvankinI.1998. 3‐D description of normal moveout in anisotropic inhomogeneous media. Geophysics63, 1079–1093.
    [Google Scholar]
  13. GrechkaV. and TsvankinI.1999. 3‐D moveout velocity analysis and parameter estimation for orthorhombic media. Geophysics64, 820–837.
    [Google Scholar]
  14. GrechkaV., TheophanisS. and TsvankinI.1999a. Joint inversion of P‐ and PS‐waves in orthorhombic media: Theory and a physical modeling study. Geophysics64, 146–161.
    [Google Scholar]
  15. GrechkaV., TsvankinI. and CohenJ.1999b. Generalized Dix equation and analytic treatment of normal‐moveout velocity for anisotropic media. Geophysical Prospecting47, 117–148.
    [Google Scholar]
  16. KorenZ. and RavveI.2011. Full azimuth subsurface angle domain wavefield decomposition and imaging, Part1: Directional and reflection image gathers. Geophysics76, S1–S13.
    [Google Scholar]
  17. KorenZ. and RavveI.2014. Azimuthally dependent anisotropic velocity model update. Geophysics79, C27–C53.
    [Google Scholar]
  18. KorenZ. and RavveI.2015. Fourth‐order NMO velocity for compressional waves in layered orthorhombic media. 77th EAGE meeting, Madrid, Spain, Expanded Abstracts, Tu N102 14.
  19. PechA. and TsvankinI.2004. Quartic moveout coefficient for a dipping azimuthally anisotropic layer. Geophysics69, 699–707.
    [Google Scholar]
  20. RavveI. and KorenZ.2014. Azimuthally‐dependent long‐offset moveout approximation for compressional waves in orthorhombic layered medium. 16th International Workshop on Seismic Anisotropy, Extended Abstracts, Natal, Brazil.
  21. StewartR., GaiserJ., BrownR. and LawtonD.2002. Converted‐wave seismic exploration: Methods. Geophysics67, 1348–1363.
    [Google Scholar]
  22. StewartR., GaiserJ., BrownR. and LawtonD.2003. Converted‐wave seismic exploration: Applications. Geophysics68, 40–57.
    [Google Scholar]
  23. ThomsenL.1986. Weak elastic anisotropy. Geophysics51, 1954–1966.
    [Google Scholar]
  24. ThomsenL.1999. Converted‐wave reflection seismology over inhomogeneous anisotropic media. Geophysics64, 678–690.
    [Google Scholar]
  25. TsvankinI.1997a. Reflection moveout and parameter estimation for horizontal transverse isotropy. Geophysics62, 614–629.
    [Google Scholar]
  26. TsvankinI.1997b. Anisotropic parameters and P‐wave velocity for orthorhombic media. Geophysics62, 1292–1309.
    [Google Scholar]
  27. TsvankinI. and GrechkaV.2011. Seismology of Azimuthally Anisotropic Media and Seismic Fracture Characterization. SEG, Oklahoma, USA. ISBN 978‐1‐56080‐228‐0.
    [Google Scholar]
  28. VavričukV.1999. Properties of S‐waves near a kiss singularity: a comparison of exact and ray solutions. Geophysical Journal International138, 581–589.
    [Google Scholar]
  29. VlaarN.1968. Ray theory for an anisotropic inhomogeneous elastic medium. Bulletin of Seismological Society of America58, 2053–2072.
    [Google Scholar]
  30. WangS., HollisT. and NowryW.2013. Converted‐wave time imaging – nuts and bolts. GeoConvention 2013: Integration, Calgary, AB, Extended Abstracts.
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12340
Loading
/content/journals/10.1111/1365-2478.12340
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Anisotropy; Converted wave; Moveout velocity

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error