1887
Volume 28 Number 1
  • E-ISSN: 1365-2117

Abstract

Abstract

Sedimentary basins in NW‐Germany and the Netherlands represent potential targets for shale gas exploration in Europe due to the presence of Cretaceous (Wealden) and Jurassic (Posidonia) marlstones/shales as well as various Carboniferous black shales. In order to assess the regional shale gas prospectivity of this area, a 3D high‐resolution petroleum system model has been compiled and used to reconstruct the source‐rock maturation based on calibrated burial and thermal histories. Different basal heat flow scenarios and accordingly, different high‐resolution scenarios of erosional amount distribution were constructed, incorporating all major uplift events that affected the study area. The model delivers an independent 3D reappraisal of the tectonic and thermal history that controlled the differential geodynamic evolution and provides a high‐resolution image of the maturity distribution and evolution throughout the study area and the different basins. Pressure, temperature and TOC‐dependent gas storage capacity and gas contents of the Posidonia Shale and Wealden were calculated based on experimentally derived Langmuir sorption parameters and newly compiled source‐rock thickness maps indicating shale gas potential of the Lower Saxony Basin, southern Gifhorn Trough and West Netherlands Basin.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12096
2015-01-21
2024-03-28
Loading full text...

Full text loading...

References

  1. Adriasola‐Muñoz, Y., Littke, R. & Brix, M.R. (2007) Fluid systems and basin evolution of the western Lower Saxony Basin, Germany. Geofluids, 7, 335–355.
    [Google Scholar]
  2. van Adrichem Boogaert, H.A. & Kouwe, W.F.P. (1993) Stratigraphic nomenclature of the Netherlands, revision and update by RGD and NOGEPA. Meded. Rijks Geol. Dienst, 50, 1–40.
    [Google Scholar]
  3. Altebaeumer, F.J. (1982) Studies on hydrocarbon genesis in clay stones of the Upper Jurassic Delta (Pliensbachium) in the North West German Basin, with particular regard to the influence of the hot intrusive masses of Bramsche and Vlotho. Dissertation, RWTH Aachen University, Aachen.
  4. Ambrose, R.J., Hartman, R.C. & Diaz‐Campos, M. (2012) Shale gas‐in‐place calculations part I: new pore‐scale considerations. SPE J., 17(1), 219–229.
    [Google Scholar]
  5. Andruleit, H., Bahr, A., Bönnemann, C., Erbacher, J., Franke, D., Gerling, J.P., Gestermann, N., Himmelsbach, T., Kosinowski, M., Krug, S., Pierau, R., Pletsch, T., Rogalla, U., Schlömer, S. & Niko‐Projekt‐Team (2012) Abschätzung des Erdgaspotenzials aus dichten Tongesteinen (Schiefergas) in Deutschland. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover.
    [Google Scholar]
  6. Baldschuhn, R. & Kockel, F. (1999) Das Osning‐Lineament am Südrand des Niedersachsen‐Beckens. Zeitschrift der Deutschen Geologischen Gesellschaft, 150(4), 673–695.
    [Google Scholar]
  7. Baldschuhn, R., Kockel, F., Best, G., Deneke, E., Frisch, U., Juergens, U., Schmitz, J., Sattler–Kosinowski, S., Stancu–Kristoff, G. & Zirngast, M. (1996) Geotektonischer Atlas von NW–Deutschland/Tectonic Atlas of NW–Germany 1:300 000. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover.
    [Google Scholar]
  8. van Balen, R.T., Houtgast, R.F. & Cloetingh, S.A.P.L. (2005) Neotectonics of the Netherlands; a review. In: Neotectonics and Quaternary Fault‐Reactivation in Europe's Intraplate Lithosphere (Ed. by S.A.P.L.Cloetingh & T.G.M.Cornu ), pp. 439–454. Pergamon, Oxford.
    [Google Scholar]
  9. Bartenstein, H., Teichmüller, M. & Teichmüller, R. (1971) Die Umwandlung der organischen Substanz im Dach des Bramscher Massivs. Fortschr. Geol. Rheinl. u. Westf., 18, 501–538.
    [Google Scholar]
  10. Bilgili, F., Götze, H.‐J., Pasteka, R., Schmidt, S. & Hackney, R. (2009) Intrusion versus inversion – a 3D density model of the southern rim of the Northwest German Basin. Int. J. Earth Sci., 98(3), 571–583.
    [Google Scholar]
  11. Blumenstein, I.O., Krooss, B.M., di Primio, R., Rottke, W., Muller, E., Westerlage, C. & Littke, R. (2008) Biodegradation in numerical basin modelling: a case study from the Gifhorn Trough, N‐Germany. Int. J. Earth Sci., 97, 1115–1129.
    [Google Scholar]
  12. Breitkreuz, C., Geissler, M., Schneider, J. & Kiersnowski, H. (2008) Basin initiation: volcanism and sedimentation. In: Dynamics of Complex Intracontinental Basins (Ed. by R.Littke , U.Bayer , D.Gajewski & S.Nelskamp ), pp. 173–180. Springer‐Verlag, Berlin.
    [Google Scholar]
  13. Brink, H.‐J. (2002) Die Anomalien von Bramsche, wieder eine offene Frage?Erdöl Erdgas Kohle, 118(1), 18–22.
    [Google Scholar]
  14. Brink, H.‐J. (2010) Classification of the Central European Basin System (CEBS). DGMK Research Report, 577‐2/4, pp. 63.
  15. Brink, H.‐J. (2012) Kosmische Würfelspiele und die Entwicklung der Erde. Dinslaken (Athene Media), pp. 120.
  16. Brink, H.‐J. (2013) Die Intrusion von Bramsche – ein Irrtum im invertierten Niedersächsischen Becken?Zeitschr. D. Ges. Geowiss., 164(1), 33–48.
    [Google Scholar]
  17. Brockamp, B. (1967) Kurzbericht über die im Gebiet um Osnabrück durchgeführten seismischen Arbeiten des Instituts für Reine und Angewandte Geophysik der Universitat Münster. Veröff. Dt. Geodät. Komm., B153, 1–12.
    [Google Scholar]
  18. Bruns, B., di Primio, R., Berner, U. & Littke, R. (2013) Petroleum system evolution in the inverted Lower Saxony Basin, northwest Germany: a 3D basin modeling study. Geofluids, 13(2), 246–271.
    [Google Scholar]
  19. Büker, C., Littke, R. & Welte, D.H. (1995) 2D–modeling of the thermal evolution of Carboniferous and Devonian sedimentary rocks of the eastern Ruhr basin and northern Rhenish Massif, Germany. Zeitschr. D. Ges. Geowiss., 146, 321–339.
    [Google Scholar]
  20. Busch, A. & Gensterblum, Y. (2011) CBM and CO2‐ECBM related sorption processes in coal: a review. Int. J. Coal Geol., 87, 49–71.
    [Google Scholar]
  21. Chaussard, E. & Amelung, F. (2014) Regional controls on magma ascent and storage in volcanic arcs. Geochem. Geophys. Geosyst., 15(4), 1407–1418.
    [Google Scholar]
  22. Cloetingh, S. & Ziegler, P.A. (2007) Tectonic models for the evolution of sedimentary basins. In: Crust and Lithosphere Dynamics. Treatise on Geophysics, Vol. 6 (Ed. by A.B.Watts ), pp. 485–611. Elsevier B.V., Amsterdam.
    [Google Scholar]
  23. De Jager, J. & Geluk, M.C. (2007) Petroleum geology. In: Geology of the Netherlands: Royal Netherlands Academy of Arts and Science (Ed. by T.E.Wong , D.A.J.Batjes & J.De Jager ), pp. 241–264. Elsevier, Netherlands.
    [Google Scholar]
  24. Doornenbal, H. & Stevenson, A., editors. (2010) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications, b.v., Houten.
    [Google Scholar]
  25. Drozdzewski, G. & Wrede, V. (1994) Faltung und Bruchtektonik – Analyse der Tektonik im Subvariscikum. Fortschr. Geol. Rheinl. u. Westf., 38, 7–187.
    [Google Scholar]
  26. Duin, E.J.T., Doornenbal, J.C., Rijkers, R.H.B., Verbeek, J.W. & Wong, T.E. (2006) Subsurface structure of the Netherlands – results of recent onshore and offshore mapping. Netherlands J. Geosci., 85, 245–276.
    [Google Scholar]
  27. Eseme, E., Urai, J.L., Krooss, B.M. & Littke, R. (2007) Review of mechanical properties of oil shales: implications for exploitation and basin modelling. Oil Shale, 24(2), 159–174.
    [Google Scholar]
  28. Eseme, E., Krooss, B.M. & Littke, R. (2012) Evolution of petrophysical properties of oil shales during high‐temperature compaction tests: implications for petroleum expulsion. Mar. Pet. Geol., 31, 110–124.
    [Google Scholar]
  29. Franke, W. (2000) The mid‐European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol. Soc. Spec. Publ., 179, 35–61.
    [Google Scholar]
  30. Gasparik, M., Ghanizadeh, A., Bertier, P., Gensterblum, Y., Bouw, S. & Krooss, B.M. (2012) High‐pressure methane sorption isotherms of Black Shales from The Netherlands. Energy Fuels, 26(8), 4995–5004.
    [Google Scholar]
  31. Gasparik, M., Bertie, R.P., Gensterblum, Y., Ghanizadeh, A., Krooss, B.M. & Littke, R. (2014) Geological controls on the methane storage capacity in organic‐rich shales. Int. J. Coal Geol., 123, 34–51.
    [Google Scholar]
  32. Geluk, M.C. (2007) Triassic. In: Geology of the Netherlands (Ed. by T.E.Wong , D.A.J.Batjes & J.de Jager ), pp. 85–106. Royal Netherlands Academy of Arts and Science, Netherlands.
    [Google Scholar]
  33. Gensterblum, Y., Merkel, A., Busch, A., Krooss, B.M. & Littke, R. (2014) Gas saturation and CO2 enhancement potential of coalbed methane reservoirs as a function of depth. Am. Assoc. Pet. Geol. Bull., 98(2), 395–420.
    [Google Scholar]
  34. Gerling, P., Geluk, M.C., Kockel, F., Lokhorst, A., Lott, G.K. & Nicholson, R.A. (1999a) NW European Gas Atlas – new implications for the Carboniferous gas plays in the western part of the Southern Permian Basin. Geol. Soc. Lond., Petr. Geol. Conf. Ser., 5, 799–808.
    [Google Scholar]
  35. Gerling, P., Kockel, F. & Krull, P. (1999b) Das Kohlenwasserstoff–Potential des Präwestfals im norddeutschen Becken – Eine Synthese. DGMK Research Report, 433, Hamburg.
  36. Glennie, K.W. (1986) Development of N.W. Europe's Southern Permian gas basin. Geol. Soc. Spec. Publ., 23, 3–22.
    [Google Scholar]
  37. Hantschel, T. & Kauerauf, A.I. (2009) Fundamentals of Basin and Petroleum Systems Modeling. Springer, Dordrecht.
    [Google Scholar]
  38. Hao, F., Zou, H. & Lu, Y. (2013) Mechanisms of shale gas storage: implications for shale gas exploration in China. Am. Assoc. Pet. Geol. Bull., 97(8), 1325–1346.
    [Google Scholar]
  39. Hecht, F., Hering, O. & Knoblock, J. (1962) Stratigraphie, Speichergesteins‐Ausbildung und Kohlenwasserstoff‐Führung im Rotliegenden und Karbon der Tiefbohrung Hoya Z1. Fortschr. Geol. Rheinl. u. Westf., 3, 1061–1074.
    [Google Scholar]
  40. Hildenbrandt, A., Kroos, B.M., Busch, A. & Gaschnitz, R. (2006) Evolution of methane sorption capacity of coal seams as a function of burial history – a case study from the Campine Basin, NE Belgium. Int. J. Coal Geol., 66(3), 179–203.
    [Google Scholar]
  41. Hoffmann, N., Hengesbach, L., Friedrichs, B. & Brink, H.‐J. (2008) The contribution of magnetotellurics to an improved understanding of the geological evolution of the North German Basin – review and new results. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 159(4), 591–606.
    [Google Scholar]
  42. van Hoorn, B. (1987) Structural evolution, timing and tectonic style of the Sole Pit inversion. Tectonophysics, 137, 309–334.
    [Google Scholar]
  43. de Jager, J. (2007) Geological development. In: Geology of the Netherlands: Royal Netherlands Academy of Arts and Science (Ed. by T.E.Wong , D.A.J.Batjes & J.de Jager ), pp. 5–26. Elsevier, Netherlands.
    [Google Scholar]
  44. John, H. (1975) Hebungs‐ und Senkungsvorgänge in Nordwestdeutschland. Erdöl u. Kohle, Erdgas, Petrochemie, 28 (6), 273–277.
    [Google Scholar]
  45. Kley, J. & Voigt, T. (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa‐Europe‐Iberia convergence, not Alpine collision. Geology, 36, 839–842.
    [Google Scholar]
  46. Kockel, F. (2002) Rifting processes in NW–Germany and the German North Sea Sector. Neth. J. Geosci., 81, 149–158.
    [Google Scholar]
  47. Kockel, F. (2003) Inversion structures in Central Europe – expressions and reasons, an open discussion. Neth. J. Geosci., 82(4), 367–382.
    [Google Scholar]
  48. Krzywiec, P. (2006) Structural inversion of the Pomeranian and Kuiavian segments of the Mid‐Polish Trough – lateral variations in timing and structural style. Geol. Q., 51(1), 151–168.
    [Google Scholar]
  49. Leischner, K. (1994) Kalibration simulierter Temperaturgeschichten. Dissertation, Berichte des Forschungszentrums Jülich, Jülich.
  50. Leischner, K., Welte, D.H. & Littke, R. (1993) Fluid inclusions and organic maturity parameters as calibration tools in basin modeling. Spec. Pub. ‐ Norw. Petrol. Soc., 3, 161–172.
    [Google Scholar]
  51. Leythaeuser, D., Littke, R., Radke, M. & Schaefer, R.G. (1988) Geochemical effects of petroleum migration and expulsion from Toarcian source rocks in the Hils syncline area, NW‐Germany. Org. Geochem., 13(1–3), 489–502.
    [Google Scholar]
  52. Littke, R., Baker, D.R. & Leythaeuser, D. (1988) Microscopic and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rocks of different maturities. Org. Geochem., 13, 549–559.
    [Google Scholar]
  53. Littke, R., Bueker, C., Lueckge, A., Sachsenhofer, R.F. & Welte, D.H. (1994) A new evaluation of palaeo‐heat flows and eroded thicknesses for the Carboniferous Ruhr basin, western Germany. Int. J. Coal Geol., 26(3–4), 155–183.
    [Google Scholar]
  54. Littke, R., Krooss, B.M., Idiz, E. & Frielingsdorf, J. (1995) Molecular nitrogen in natural gas accumulations: generation from sedimentary organic matter at high temperature. Am. Assoc. Pet. Geol. Bull., 79, 410–430.
    [Google Scholar]
  55. Littke, R., Jendrzejewsk, I.L., Lokay, P., Shuangqing, W. & Rullkötter, J. (1998) Organic geochemistry and depositional history of the Barremian‐Aptian boundary interval in the Lower Saxony Basin, northern Germany. Cretac. Res., 19, 581–614.
    [Google Scholar]
  56. Littke, R., Bayer, U., Gajewski, D. & Nelskamp, S. (2008) Dynamics of Complex Intracontinental Basins, 519 pp. Springer‐Verlag, Berlin, Heidelberg.
    [Google Scholar]
  57. Littke, R., Krooss, B., Uffmann, A.K., Schulz, H.M. & Horsfield, B. (2011) Unconventional gas resources in the Paleozoic of Central Europe. Oil Gas Sci. Technol., 66 (6), 953–977.
    [Google Scholar]
  58. de Lugt, I.R., van Wees, J.D. & Wong, T.E. (2003) The tectonic evolution of the southern Dutch North Sea during the Paleogene: basin inversion in distinct pulses. Tectonophysics, 373, 141–159.
    [Google Scholar]
  59. Marotta, A.M., Bayer, U., Scheck, M. & Thybo, H. (2001) The stress field below the NE German Basin: effects indeuced by the Alpine collision. Geophys. J. Int., 144(2), F8–F12.
    [Google Scholar]
  60. Maystrenko, Y., Bayer, U., Brink, H.‐J. & Littke, R. (2008) The Central European basin system – an overview. In: Dynamics of Complex Intracontinental Basins (Ed. by R.Littke , U.Bayer , D.Gajewski & S.Nelskamp ), pp. 15–34. Springer‐Verlag, Berlin.
    [Google Scholar]
  61. Maystrenko, Y., Bayer, U. & Scheck–Wenderoth, M. (2010) Structure and evolution of the Central European Basin System according to 3D modeling. DGMK Research Report, 577–2/2, Hamburg.
  62. McKenzie, D. (1978) Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett., 40, 25–32.
    [Google Scholar]
  63. Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie–Blick, N. & Pekar, S.F. (2005) The Phanerozoic record of global sea–level change. Science, 310, 1293–1298.
    [Google Scholar]
  64. Nelskamp, S. (2011) Structural evolution, temperature and maturity of sedimentary rocks in the Netherlands: results of combined structural and thermal 2D modeling. Dissertation, RWTH Aachen University, Aachen.
  65. Nelskamp, S., David, P. & Littke, R. (2008) A comparison of burial, maturity and temperature histories of selected wells from sedimentary basins in The Netherlands. Int. J. Earth Sci., 97, 931–953.
    [Google Scholar]
  66. Neunzert, G.H., Gaupp, R. & Littke, R. (1996) Absenkungs– und Temperaturgeschichte paläozoischer und mesozoischer Formationen im Nordwestdeutschen Becken. Zeitschrift der Deutschen Geologischen Gesellschaft, 147, 183–208.
    [Google Scholar]
  67. Oncken, O., Plesch, A., Weber, J., Ricken, W. & Schrader, S. (2000) Passive margin detachment during arc‐continent collision (Central European Variscides). Geol. Soc. Spec. Publ., 179, 199–216.
    [Google Scholar]
  68. Pepper, A.S. & Corvi, P.J. (1995a) Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen. Mar. Pet. Geol., 12(3), 291–319.
    [Google Scholar]
  69. Pepper, A.S. & Corvi, P.J. (1995b) Simple kinetic models of petroleum formation. Part II: oil‐gas cracking. Mar. Pet. Geol., 12(3), 321–340.
    [Google Scholar]
  70. Petmecky, S.P. (1998) Numerische Simulation der Entwicklungsgeschichte des zentralen Niedersächsischen Beckens unter besonderer Berücksichtigung der Erdgaslagerstätten–Bildung. Dissertation, Berichte des Forschungszentrums Jülich, Jülich.
  71. Petmecky, S.P., Meier, L., Reiser, H. & Littke, R. (1999) High thermal maturity in the Lower Saxony Basin: intrusion or deep burial?Tectonophysics, 304, 317–344.
    [Google Scholar]
  72. Petrini, K. & Podladchikov, Y. (2000) Lithospheric pressure‐depth relationship in compressive regions of thickened crust. J. Metamorph. Geol., 18, 67–77.
    [Google Scholar]
  73. di Primio, R. & Horsfield, B. (2006) From petroleum type organofacies to hydrocarbon phase prediction. Am. Assoc. Pet. Geol. Bull., 90(7), 1031–1058.
    [Google Scholar]
  74. Resak, M., Narkiewicz, M. & Littke, R. (2008) New basin modeling results from the Polish part of the Central European Basin system: implications for the Late Cretaceous‐Early Paleogene structural inversion. Int. J. Earth Sci., 97, 955–972.
    [Google Scholar]
  75. Rippen, D., Littke, R., Bruns, B. & Mahlstedt, N. (2013) Organic geochemistry and petrography of Lower Cretaceous Wealden black shales of the Lower Saxony Basin: the transition from lacustrine oil shales to gas shales. Org. Geochem., 63, 18–36.
    [Google Scholar]
  76. Scheibe, R., Seidel, K., Vormbaum, M. & Hoffmann, N. (2005) Magnetic and gravity modelling of the crystalline basement in the North German Basin. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 156(2), 291–298.
    [Google Scholar]
  77. Scheidt, G. & Littke, R. (1989) Comparative organic petrology of interlayered sandstones, siltstones, mudstones and coals in the Upper Carboniferous Ruhr basin, Northwest Germany, and their thermal history and methane generation. Geol. Rundsch., 78, 375–390.
    [Google Scholar]
  78. Schmidt, A. (1914) Die magnetische Vermessung I. Ordnung des Königreichs Preußen 1898–1903 nach den Beobachtungen von M. Eschenhagen und J. Edler, Vol. 276, pp. 43. Veröffentlichung des Königlich‐Preussischen Meteorologischen Instituts, Berlin (Behrend).
    [Google Scholar]
  79. Schwarzer, D. & Littke, R. (2007) Petroleum generation and migration in the ‘Tight Gas’ area of the German Rotliegend natural gas play: a basin modeling study. Petrol. Geosci., 13, 37–62.
    [Google Scholar]
  80. Schwarzkopf, T. (1987) Herkunft und Migration des Erdöls in ausgewählten Dogger beta Lagerstätten des Gifhorner Troges: Wechselwirkungen zwischen Kohlenwasserstoffgenese und Sandsteindiagense. Dissertation, RWTH Aachen, Aachen.
  81. Senglaub, Y., Brix, M.R., Adriasola, A.C. & Littke, R. (2005) New information on the thermal history of the southwestern Lower Saxony Basin, northern Germany, based on fission track analysis. Int. J. Earth Sci., 95(5–6), 876–896.
    [Google Scholar]
  82. Senglaub, Y., Littke, R. & Brix, M.R. (2006) Numerical modelling of burial and temperature history as an approach for an alternative interpretation of the Bramsche anomaly, Lower Saxony Basin. Int. J. Earth Sci., 95, 204–224.
    [Google Scholar]
  83. Stadler, G. (1971) Die Vererzung im Bereich des Bramscher Massivs und seiner Umgebung. Fortschr. Geol. Rheinl. Westf., 18, 439–500.
    [Google Scholar]
  84. Stadler, G. & Teichmüller, R. (1971) Zusammenfassender Überblick über die Entwicklung des Bramscher Massivs und des Niedersächsischen Tektogens. Fortschr. Geol. Rheinl. u. Westf., 18, 547–564.
    [Google Scholar]
  85. Stahl, W. (1971) Isotopen‐Analysen an Carbonaten und Kohlendioxid‐Proben aus dem Einflußbereich und der weiteren Umgebung des Bramscher Intrusivs und an hydrothermalen Carbonaten aus dem Siegerland. Fortschr. Geol. Rheinl. u. Westf., 18, 429–438.
    [Google Scholar]
  86. Stampfli, G.M. & Borel, G.D. (2004) The TRANSMED Transects in space and time: constraints on the Paleotectonic evolution of the Mediterranean domain. In: The TRANSMED Atlas, the Mediterranean Region from Crust to Mantle (Ed. by W.Cavazza , F.M.Roure , G.M.Stampfli & P.A.Ziegler ), pp. 52–80. Springer, Berlin, Heidelberg.
    [Google Scholar]
  87. Sweeney, J.J. & Burnham, A.K. (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. Am. Assoc. Pet. Geol. Bull., 74, 1559–1570.
    [Google Scholar]
  88. Teichmüller, R. & Teichmüller, M. (1985) Inkohlungsgradienten in der Anthrazitfolge des Ibbenbürener Karbons. Fortschr. Geol. Rheinl. u. Westf., 33, 231–253.
    [Google Scholar]
  89. Teichmüller, M., Teichmüller, R. & Bartenstein, H. (1979) Inkohlung und Erdgas in Nordwestdeutschland. Eine Inkohlungskarte der Oberfläche des Oberkarbons. Fortschr. Geol. Rheinl. u. Westf., 27, 137–170.
    [Google Scholar]
  90. Teichmüller, M., Teichmüller, R. & Bartenstein, H. (1984) Inkohlung und Erdgas – eine neue Inkohlungskarte der Karbon‐Oberfläche in Nordwestdeutschland. Fortschr. Geol. Rheinl. u. Westf., 32(1), 4–34.
    [Google Scholar]
  91. Uffmann, A.K., Bruns, B. & Littke, R. (2010) Dynamics of the Central European Basin System (CEBS): large scale models of the Paleozoic petroleum system in the North German Basin. DGMK Research Report, 577‐2/3, Hamburg.
  92. Uffmann, A.K., Littke, R. & Rippen, D. (2012) Mineralogy and geochemistry of Mississippian and Lower Pennsylvanian Black Shales at the Northern Margin of the Variscan Mountain Belt (Germany and Belgium). Int. J. Coal Geol., 103, 92–108.
    [Google Scholar]
  93. Van Wees, J.D., Stephenson, R.A., Ziegler, P.A., Bayer, U., McCann, T., Dadlez, R., Gaupp, R., Narkiewicz, M., Bitzer, F. & Scheck, M. (2000) On the origin of the southern Permian Basin, Central Europe. Mar. Pet. Geol., 17, 43–59.
    [Google Scholar]
  94. van Wees, J.D., Van Bergen, F., David, P., Nepveu, M., Beekman, F., Cloetingh, S. & Bonté, D. (2009) Probabilistic tectonic heat flow modeling for basin maturation: assessment method and applications. Mar. Pet. Geol., 26, 536–551.
    [Google Scholar]
  95. Wehner, H. (1997) Source and maturation of crude oils in northern and eastern Germany – an organic geochemical approach. Geol. Jahrb., Reihe D., 103, 85–102.
    [Google Scholar]
  96. Wygrala, B.P. (1989) Integrated Study of an Oil Field in the Southern Po Basin, Northern Italy, pp. 2313. Berichte Kernforschungsanlage Jülich, Jülich.
    [Google Scholar]
  97. Zhang, T., Ellis, G.S., Ruppel, S.C., Milliken, K. & Yang, R. (2012) Effect of organic‐matter type and thermal maturity on methane adsorption in shale‐gas systems. Org. Geochem., 47, 120–131.
    [Google Scholar]
  98. Ziegler, P.A. (1990) Geological Atlas of Western and Central Europe. 2nd edn, Shell International, The Hague.
    [Google Scholar]
  99. Ziegler, P.A., Cloetingh, S. & van Wees, J.D. (1995) Dynamics of intra‐plate compressional deformation: the Alpine foreland and other examples. Tectonophysics, 252, 7–59.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12096
Loading
/content/journals/10.1111/bre.12096
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error