1887
Volume 14 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

In geophysical and hydrological studies, it can be challenging to achieve a complete understanding of infiltration processes in the upper zone of a karstic aquifer since this type of medium is highly heterogeneous and may contain a perched aquifer. In an effort to further investigate such aquifers, time‐lapse electrical resistivity tomography and time‐lapse seismic refraction tomography were carried out at three different epochs and at two sites on a dolostone plateau of Southern France. The first site has a sinkhole, whereas the second covers a less efficiently drained area, which is characterized by temporary lakes during periods of heavy rain.

These studies show that shallow time‐lapse electrical resistivity tomography and time‐lapse seismic refraction tomography analyses are correlated with hydrological data because resistivities and propagation velocities decrease with increasing rainfall. Nevertheless, the Biot–Gassmann relationship does not provide an adequate explanation for the strong variations in velocity observed in the upper parts of the models. This could be explained by the dissolution process called ghost‐rock weathering, which directly attacks the dolostone rock frame of the studied area. The assessment of such processes can lead to an improved understanding of velocity variations and to the localization of dissolution processes that may affect karstic landscapes or even lead to their collapse.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2015052
2015-10-01
2024-04-26
Loading full text...

Full text loading...

References

  1. AdamL., BatzleM. and BrevikI.2006. Gassmann fluid substitution and shear modulus variability in carbonates at laboratory seismic and ultrasonic frequencies. Geophysics71, 1–11.
    [Google Scholar]
  2. ArchieG.E.1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining and Metallurgical Engineers146, 54–61.
    [Google Scholar]
  3. BakalowiczM.1995. La zone des infiltrations des aquifères karstiques. Méthode d’étude, structure et fonctionnement. Hydrogéologie4, 3–21.
    [Google Scholar]
  4. BakalowiczM. and DôrfligerN.2005. Ressources en eau du karst : un enjeu pour le bassin méditerranéen. Géosciences ‐ l’eau souterraine. BRGM2, 26–31.
    [Google Scholar]
  5. BatzleM.L., HanD.H. and HofmannR.2006. Fluid mobility and frequency‐dependent seismic velocity: direct measurements. Geophysics71, 1–9.
    [Google Scholar]
  6. BiotM.1956. Theory of propagation of elastic waves in a fluid saturated porous solid. Journal of the Acoustical Society of America28, 168–191.
    [Google Scholar]
  7. BruxellesL. and CaubelA.1996. Lacs temporaires et circulations de surface sur le causse de l’Hospitalet du Larzac (12) en 1996. In: Bulletin de la Société Languedocienne de Géographie, «De l’inondation à l’assèchement, Comment Domestiquer les Eaux du Biterrois,» fasc. 3–4, pp. 253–288.
    [Google Scholar]
  8. BruxellesL.2001. Dépôts et altérites des plateaux du Larzac central: causses de l’Hospitalet et de Campestre (Aveyron, Gard, Hérault). Evolution morphogénique, conséquences géologiques et implications pour l’aménagement. PhD thesis. University of Provence, Marseille, France.
    [Google Scholar]
  9. CadoretT., MavkoG. and ZinsznerB.1998. Fluid distribution effect on sonic attenuation in partially saturated limestones. Geophysics63, 154–60.
    [Google Scholar]
  10. CarrièreS., ChalikakisK., SénéchalG., DanquignyC. and EmblanchC.2013. Combining electrical resistivity tomography and ground penetrating radar to study geological structuring of karst unsaturated zone. Journal of Applied Geophysics94, 31–41.
    [Google Scholar]
  11. ChalikakisK., PlagnesV., GuérinR., ValoisR. and BoschF.P.2011. Contribution of geophysical methods to karst‐system exploration: an overview. Hydrogeology Journal19, 1169–1180.
    [Google Scholar]
  12. ChambersJ.E., GunnD.A., WilkinsonP.B., MeldrumP.I., HaslamE., HolyoakeS.et al. 2014. 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment. Near Surface Geophysics12, 61–72.
    [Google Scholar]
  13. ChoG.C. and SantamarinaJ.C.2001. Unsaturated particulate materials ‐ Particle level studies. Journal of Geotechnical and Geoenvironmental Engineering127, 84–96.
    [Google Scholar]
  14. ClémentR., DescloitresM., GuntherT., RibolziO. and LegchenkoA.2009. Influence of shallow infiltration on time‐lapse ERT: experience of advanced interpretation. Comptes Rendus Geosciences341, 886–898.
    [Google Scholar]
  15. DahlinT.2001. The development of electrical imaging techniques. Computers and Geosciences27, 1019–1029.
    [Google Scholar]
  16. DahlinT., AronssonP. and ThörnelöfM.2014. Soil resistivity monitoring of an irrigation experiment. Near Surface Geophysics12, 35–43.
    [Google Scholar]
  17. DebegliaN., BitriA. and ThierryP.2006. Karst investigations using microgravity and MASW; application to Orleans, France. Near Surface Geophysics4, 215–225.
    [Google Scholar]
  18. DescloitresM., RuizL., SekharM., LegchenkoA., BraunJ.J., KumarM.S.M.et al. 2008. Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding. Hydrological Processes22, 384–394.
    [Google Scholar]
  19. DevilleS., JacobT., CheryJ. and ChampollionC.2012. On the impact of topography and building mask on time varying gravity due to local hydrology. Geophysical Journal International192, 82–93.
    [Google Scholar]
  20. DuboisC., QuinifY., BaeleJ.M., DagrainF., DeceusterJ. and KaufmannO.2014. Mineralogical and petrophysical properties evolution of a weathered limestone in southern Belgium. Geologica Belgica17, 1–8.
    [Google Scholar]
  21. FrattaD., AlshibliK.A., TannerW.M. and RousselL.2005. Combined TDR and P‐wave velocity measurements for the determination of in situ soil density‐experimental study. Geotechnical Testing Journal28, 553–563.
    [Google Scholar]
  22. GainesD., GregoryS., BakerG.S., HubbardS.S, WatsonD., BrooksS.et al. 2010. Detecting perched water bodies using surface‐seismic time‐lapse traveltime tomography. In: Advances in Near‐Surface Seismology and Ground‐Penetrating Radar.
    [Google Scholar]
  23. GalibertP.Y., ValoisR., MendesM. and GuérinR.2014. Seismic study of the low‐permeability volume in southern France karst systems. Geophysics79, EN1–EN13.
    [Google Scholar]
  24. GassmannF.1951. Elastic wave through a packing of spheres. Geophysics16, 673–685.
    [Google Scholar]
  25. GhorbaniA., ZamoraM. and CosenzaP.2009. Effects of desiccation on the elastic wave velocities of clay‐rocks. International Journal of Rock Mechanics and Mining Science46, 1267–1272.
    [Google Scholar]
  26. GrellierS., GuérinR., RobainH., BobachevA., VermeerschF. and TabbaghA.2008. Monitoring of leachate recirculation in a bioreactor landfill by 2D electrical resistivity imaging. Journal of Environmental and Engineering Geophysics13, 351–359.
    [Google Scholar]
  27. GrochauM. and GurevichB.2009. Testing Gassmann fluid substitution: sonic logs versus ultrasonic core measurements. Geophysical Prospecting57, 75–79.
    [Google Scholar]
  28. GuérinR., BaltassatJ.M., BoucherM., ChalikakisK., GalibertP.Y., GirardJ.F.et al. 2009. Geophysical characterization of karst networks – Application to the Ouysse system (Poumeyssen, France). Comptes Rendus Geoscience341, 810–817.
    [Google Scholar]
  29. HayleyK., BentleyL.R. and GharibiM.2009. Time‐lapse electrical resistivity monitoring of salt‐affected soil and groundwater. Water Resources Research45, W07425.
    [Google Scholar]
  30. HayleyK., BentleyL.R. and PidliseckyA.2010. Compensating for temperature variations in time‐lapse electrical resistivity difference imaging. Geophysics75, 51–59.
    [Google Scholar]
  31. HilbichC.2010. Time‐lapse refraction seismic tomography for the detection of ground ice degradation. The Cryosphere4, 243–259.
    [Google Scholar]
  32. JacobT., BayerR., ChéryJ. and Le MoigneN.2010. Time‐lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer. Journal of Geophysical Research115, B06402.
    [Google Scholar]
  33. KaufmannO. and DeceusterJ.2014. Detection and mapping of ghost‐rock features in the Tournaisis area through geophysical methods – an overview. Geologica Belgica17, 17–26.
    [Google Scholar]
  34. KhazanehdariJ. and SothcottJ.2003. Variation in dynamic elastic shear modulus of sandstone upon fluid saturation and substitution. Geophysics68, 472–481.
    [Google Scholar]
  35. KimJ.H., YiM.J., ParkS.G. and KimJ.G.2009. 4D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model. Journal of Applied Geophysics68, 522–532.
    [Google Scholar]
  36. KlimchoukA.2004. Towards defining, delimiting and classifying épikarst: its origin, processes and variants of geomorphic evolution. Speleogenesis and Evolution of Karst Aquifers2, 1–13.
    [Google Scholar]
  37. KnightR., DvorkinzJ. and NurA.1998. Acoustic signatures of partial saturation. Geophysics63, 132–138.
    [Google Scholar]
  38. KowalskyM.B., FinsterleS. and RubinY.2004. Estimating flow parameter distributions using ground‐penetrating radar and hydrological measurements during transient flow in the vadose zone. Advances in Water Resources27, 583–599.
    [Google Scholar]
  39. KowalskyM.B., GasperikovaE., FinsterleS., WatsonD., BakerG., HubbardS.S.2011. Coupled modeling of hydrogeochemical and electrical resistivity data for exploring the impact of recharge on subsurface contamination. Water Resources Research47, W02509.
    [Google Scholar]
  40. KunianskyE.L.2005. US Geological Survey karst interest group. In: Proceedings, USGS Scientific Investigations Report, pp. 2005–5160.
    [Google Scholar]
  41. LandrøM., NguyenA.K. and MehdizadehH.2004. Time lapse refraction seismic ‐ a tool for monitoring carbonate fields? 74th SEG Meeting, Denver, Colorado, Expanded Abstract, pp. 1–4.
    [Google Scholar]
  42. LumleyD.E.2001. Time‐lapse seismic reservoir monitoring. Time‐lapse Seismic Reservoir Monitoring66, 50–53.
    [Google Scholar]
  43. MartoranaR., LombardoL., MessinaN. and LuzioD.2014. Integrated geophysical survey for 3D modelling of a coastal aquifer polluted by seawater. Near Surface Geophysics12, 45–59.
    [Google Scholar]
  44. MavkoG. and MukerjiT.1998. Bounds on low‐frequency seismic velocities in partially saturated rocks. Geophysics63, 918–924.
    [Google Scholar]
  45. MavkoG., MukerjiT. and DvorkinJ.2009. The Rock Physics Handbook.Cambridge University Press, New York.
    [Google Scholar]
  46. MeadowsM., AdamsD., WrightR., TuraA., ColeS. and LumleyD.2005. Rock physics analysis for time‐lapse seismic at Schiehallion Field, North Sea. Geophysical Prospecting53, 205–213.
    [Google Scholar]
  47. MeyerhoffS.B., KaraoulisM., FiebigF., MaxwellR.M., RevilA., MartinJ.B.et al. 2012. Visualization of conduit‐matrix conductivity differences in a karst aquifer using time‐lapse electrical resistivity. Geophysical Research Letters39, L24401.
    [Google Scholar]
  48. MichotD., BenderitterY., DorignyA., NicoullaudB., KingD. and TabbaghA.2003. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research39, 1401–1420.
    [Google Scholar]
  49. PerrinJ., JeanninP.Y. and ZwahlenF.2003. Épikarst storage in a karst aquifer: a conceptual model based on isotopic data, Milandre test site, Switzerland. Journal of Hydrology279, 106–124.
    [Google Scholar]
  50. PetrellaE., CapuanoP. and CelicoF.2007. Unusual behaviour of epikarst in the Acqua dei Faggi carbonate aquifer (Southern Italy). Terra Nova19, 82–88.
    [Google Scholar]
  51. PlagnesV.1997. Structure et fonctionnement des aquifères karstiques, Caractérisation par la géochimie des eaux. PhD thesis. Univ. Montpellier II University, Montpellier, France.
    [Google Scholar]
  52. QuinifY., VergariA., DoremusP., HennebertM. and CharletJ.M.1993. Phénomènes karstiques affectant le calcaire du Hainaut. Bulletin de la Société Belge de Géologie102, 379–394.
    [Google Scholar]
  53. RasolofosaonP. and ZinsznerB.2002. Vérification expérimentale de la formule de Gassmann dans les calcaires poreux. Oil & Gas Science and Technology57, 129–138.
    [Google Scholar]
  54. ReussA.1929. Berechnung der fliessgrense von mishkristallen. Zeitschrift für Angewandte Mathematik und Mechanik9, 49–58.
    [Google Scholar]
  55. RicardJ. and BakalowiczM.1996. Connaissance, Aménagement et Protection des Ressources en eau du Larzac Septentrional, Aveyron (France). Report BRGM R38953, pp. 94.
    [Google Scholar]
  56. RingsJ., ScheuermannA., PrekoK. and HauckC.2008. Soil water content monitoring on a dike model using electrical resistivity tomography. Near Surface Geophysics6, 123–132.
    [Google Scholar]
  57. StovasA. and LandrøM.2004. Optimal use of PP and PS time‐lapse stacks for fluid‐pressure discrimination. Geophysical Prospecting52, 301–312.
    [Google Scholar]
  58. TomsJ. and MüllerT.M.2007. Seismic attenuation in porous rocks with random patchy saturation. Geophysical Prospecting55, 671–678.
    [Google Scholar]
  59. TsuneyamaF. and MavkoG.2007. Quantitative detection of fluid distribution using time‐lapse seismic. Geophysical Prospecting55, 169–184.
    [Google Scholar]
  60. ValoisR., BermejoL., GuérinR., HinguantS., PigeaudR. and RodetJ.2010. Karstic morphologies identified with geophysics around Saulges caves (Mayenne, France). Archaeological Prospecting17, 151–160.
    [Google Scholar]
  61. ValoisR., CamerlynckC., DhemaiedA., GuérinR., HovhannissianG., PlagnesV.et al. 2011. Assessment of doline geometry using geophysics on the Quercy plateau karst (South France). Earth Surface Processes and Landforms36, 1183–1192.
    [Google Scholar]
  62. ValoisR.2011. Caractérisation structurale de morphologies karstiques superficielles et suivi temporel de l’infiltration à l’aide des méthodes électriques et sismiques. PhD thesis. University of Pierre et Marie Curie‐Paris 6, Paris, France.
    [Google Scholar]
  63. VanorioT., ScotellaroC. and MavkoG.2008. The effect of chemical and physical processes on the acoustic properties of carbonates rocks. The Leading Edge27, 1040–1048.
    [Google Scholar]
  64. VergariA. and QuinifY.1997. Les paléokarsts du Hainaut. Geodinamica Acta10, 175–187.
    [Google Scholar]
  65. VialleS. and VanorioT.2011. Laboratory measurements of elastic properties of carbonate rocks during injection of reactive CO2‐saturated water. Geophysical Research Letters38, L01302.
    [Google Scholar]
  66. VoigtW.1928. Lehrbuch der Kristallphysik, pp. 978. Teubner, Leibniz.
    [Google Scholar]
  67. WaxmanM.H. and SmitsL.M.J.1968. Electrical conductivities in oil bearing shaly sands. Society of Petroleum Engineers Journal8, 107–122.
    [Google Scholar]
  68. WyllieM.R.J., GregoryA.R. and GardnerL.W.1956. Elastic wave velocities in heterogeneous and porous media. Geophysics21, 41–70.
    [Google Scholar]
  69. WyllieM.R.J., GregoryA.R. and GardnerG.H.F.1958. An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics23, 459–493.
    [Google Scholar]
  70. ZhouQ.Y., ShimadaJ. and SatoA.2001. Three‐dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography. Water Resources Research37, 273–285.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2015052
Loading
/content/journals/10.3997/1873-0604.2015052
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error