1887
Volume 14 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Spectral induced polarization is a promising method to estimate soil hydraulic properties relatively quickly without interfering with the subsurface. It is essential for the interpretation of the spectral induced polarization data to understand the relationships between soil hydraulic properties and the parameters obtained from spectral induced polarization measurements. Recent studies often relate to certain types of unconsolidated sediments, e.g., artificial mixtures of sand and clay, or refer to particular pairs of soil hydraulic and complex electrical parameters. In the present study, we investigated seven samples of natural soils and a pure sand sample in the laboratory by spectral induced polarization and soil hydraulic measurements. After examining single combinations of parameters that can be expected from theoretical considerations, we calculated the correlation coefficients for all available pairs of complex electrical and soil hydraulic parameters. Based on this, two new empirical relationships are proposed and discussed in more detail. First, a linear relationship between the van Genuchten–Mualem parameter and the inverse of the normalized chargeability is described. Second, a power law was found to estimate the saturated hydraulic conductivity from the DC resistivity , the normalized chargeability , and the fluid conductivity .

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2015050
2015-07-01
2024-04-23
Loading full text...

Full text loading...

References

  1. ArchieG.E.1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers146, 54–62.
    [Google Scholar]
  2. BairleinK., HördtA. and NordsiekS.2014. The influence of the sample preparation on induced polarization spectra of unconsolidated sediments. Near Surface Geophysics12(5), doi: 10.3997/1873‐0604.2014023.
    [Google Scholar]
  3. BinleyA., SlaterL., FukesM. and CassianiG.2005. Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone. Water Resources Research41, W12417. doi:10.1029/2005WR004202.
    [Google Scholar]
  4. BlaschekR. and HördtA.2009. Numerical modelling of the IP‐effect at the pore scale. Near Surface Geophysics7, 579–588.
    [Google Scholar]
  5. BlumeH.‐P., BrümmerG.W., HornR., KandelerE., Kögel‐KnabnerI., KretzschmarR. et al. 2010. Scheffer/Schachtschabel Lehrbuch der Bodenkunde. Spektrum Akademischer Verlag: Heidelberg, Germany. ISBN 978‐3‐8274‐2251‐4.
    [Google Scholar]
  6. BörnerF.D. and SchönJ.H.1991. A relation between the quadrature component of electrical conductivity and the specific surface area of sedimentary rocks. The Log Analyst32, 612–613.
    [Google Scholar]
  7. BörnerF.D., SchopperJ.R. and WellerA.1996. Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophysical Prospecting44, 583–601.
    [Google Scholar]
  8. BreedeK.2012. Characterization of effective hydraulic properties of unsaturated porous media using spectral induced polarization (SIP). PhD thesis, Rheinische Friedrich‐Wilhelms‐Universität, Bonn, Germany.
    [Google Scholar]
  9. BreedeK., KemnaA., EsserO., ZimmermannE., VereeckenH. and HuismanJ.A.2011. Joint measurement setup for determining spectral induced polarization and soil hydraulic properties. Vadose Zone Journal10, 716–726.
    [Google Scholar]
  10. BreedeK., KemnaA., EsserO., ZimmermannE., VereeckenH. And HuismanJ.A.2012. Spectral induced polarization measurements on variably saturated sand‐clay mixtures. Near Surface Geophysics10(6), 479–489.
    [Google Scholar]
  11. BrooksR.H. and CoreyA.T.1964. Hydraulic properties of porous media. Hydrology Paper 3, Colorado State University, Fort Collins, USA.
    [Google Scholar]
  12. BückerM. and HördtA.2013a. Analytical modelling of membrane polarization with explicit parameterization of pore radii and the electrical double layer. Geophysical Journal International194, 804–813.
    [Google Scholar]
  13. BückerM. and HördtA.2013b. Long and short narrow pore models for membrane polarization. Geophysics78(6), E299–E314.
    [Google Scholar]
  14. ColeK.S. and ColeR.H.1941. Dispersion and absorption in dielectrics. Journal of Chemical Physics9, 341–351.
    [Google Scholar]
  15. DiamantopoulosE. and DurnerW.2012. Dynamic nonequilibrium of water flow in porous media: A review. Vadose Zone Journal11(3). doi: 10.2136/vzj2011.0197.
    [Google Scholar]
  16. DurnerW. and FlühlerH.2005. Soil hydraulic properties. In: Encyclopedia of Hydrological Sciences, (eds M.G.Anderson and J.J.McDonnell ), pp 1021–1144. Wiley: Chichester, U.K. ISBN 0‐47149103‐9.
    [Google Scholar]
  17. DurnerW., JansenU. and IdenS.C.2008. Effective hydraulic properties of layered soils at the lysimeter scale determined by inverse modelling. European Journal of Soil Science59, 114–124. doi: 10.1111/j.1365‐2389.2007.00972.x.
    [Google Scholar]
  18. DuvalY., MielczarskiJ.A., PokrovskyO.S., MielczarskiE. and EhrhardtJ.J.2002. Evidence of the existence of three types of species at the quartz‐aqueous solution interface at pH 0–10. XPS surface group quantification and surface complexation modeling. The Journal of Physical Chemistry B106(11), 2937–2945. ISSN 1520‐6106.
    [Google Scholar]
  19. FixmanM.1980. Charged macromolecules in external fields. I. The sphere. Journal of Chemical Physics72, 5177–5186.
    [Google Scholar]
  20. HalischM.2006. Petrophysikalische und geophysikalische Untersuchungen zur Qualitätskontrolle an Baustoffen. Unpublished diploma thesis, Technische Universität Clausthal, Clausthal‐Zellerfeld, Germany.
    [Google Scholar]
  21. Hoffmann‐RiemH., van GenuchtenM.T. and FlühlerH.1999. General model for the hydraulic conductivity of unsaturated soils. In: Proceedings of the International Workshop on Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media, (eds M.T.van Genuchten , F.J.Leij, and L.Wu), pp 31–42.
    [Google Scholar]
  22. HöltingB. and ColdeweyW.G.2013. Hydrogeologie: Einführung in die Allgemeine und Angewandte Hydrogeologie, 8th edn. Spektrum Akademischer Verlag: Heidelberg, Germany. ISBN 978‐3‐8274‐2354‐2.
    [Google Scholar]
  23. HopmansJ.W., SimunekJ., RomanoN. and DurnerW.2002. Simultaneous determination of water transmission and retention properties: inverse methods. In: Methods of Soil Analysis, Soil Science Society of America book series, (eds J.H.Dane and G.C.Topp ), pp 963–1008. Soil Science Society of America: Madison, WI. ISBN 0‐89118‐841‐X.
    [Google Scholar]
  24. IdenS.C. and DurnerW.2007. Free‐Form estimation of the unsaturated soil hydraulic properties by inverse modelling using global optimization. Water Resources Research43, W07451. doi: 10.1029/2006WR005845.
    [Google Scholar]
  25. KochK., KemnaA., IrvingJ. and HolligerK.2011. Impact of changes in grain size and pore space on the hydraulic conductivity and spectral induced polarization response of sand. Hydrology and Earth System Sciences15, 1785–1794.
    [Google Scholar]
  26. KochK., RevilA. and HolligerK.2012. Relating the permeability of quartz sands to their grain size and spectral induced polarization characteristics. Geophysical Journal International190, 230–242.
    [Google Scholar]
  27. KosugiK.1996. Lognormal distribution model for unsaturated soil hydraulic properties. Water Resources Research32(9), 2697–2703.
    [Google Scholar]
  28. KruschwitzS.2008. Assessment of the complex resistivity behaviour of salt affected building materials. PhD thesis, Technische Universität Berlin, Berlin, Germany.
    [Google Scholar]
  29. LeroyP., RevilA., KemnaA., CosenzaP. and GhorbaniA.2008. Complex conductivity of water‐saturated packs of glass beads. Journal of Colloid and Interface Science321, 103–117.
    [Google Scholar]
  30. LesmesD.P. and FriedmanS.P.2005. Relationships between the electrical and hydrogeological properties of rocks and soils. In: Hydrogeophysics, Water Science and Technology Library, (eds Y.Rubin and S.S.Hubbard ). Springer: Dordrecht, The Netherlands.ISBN 1‐4020‐3101‐7.
    [Google Scholar]
  31. LesmesD.P. and FryeK.M.2001. Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone. Journal of Geophysical Research106(B3), 4079–4090.
    [Google Scholar]
  32. LesmesD.P. and MorganF.D.2001. Dielectric spectroscopy of sedimentary rocks. Journal of Geophysical Research B: Solid Earth106(B7), 13329–13346.
    [Google Scholar]
  33. MarshallD.J. and MaddenT.R.1959. Induced polarization, a study of its causes. Geophysics24(4), 790–816.
    [Google Scholar]
  34. MualemY.1976. A new model of predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research12, 513–522.
    [Google Scholar]
  35. NordsiekS. and WellerA.2008. A new approach to fitting induced polarization spectra. Geophysics73(6), F235–F245.
    [Google Scholar]
  36. PapeH., RiepeL. and SchopperJ.R.1984. The role of fractal quantities, as specific surface and tortuosities, for physical properties of porous media. Particle & Particle Systems Characterization1(1–4), 66–73.
    [Google Scholar]
  37. PeltonW.H., WardS.H., HallofP.G., SillW.R. and NelsonP.H.1978. Mineral discrimination and removal of inductive coupling with multi‐frequency IP. Geophysics43, 588–609.
    [Google Scholar]
  38. PetersA. and DurnerW.2008. Simplified evaporation method for determining soil hydraulic properties. Journal of Hydrology356(1‐2), 147–162.
    [Google Scholar]
  39. PetersA., DurnerW. and WessolekG.2011. Consistent parameter constraints for soil hydraulic functions. Advances in Water Resources34(10), 1352–1365.
    [Google Scholar]
  40. PruschaH.2006. Statistisches Methodenbuch.Springer: Berlin, Germany. ISBN 978‐3‐540‐29305‐7.
    [Google Scholar]
  41. RevilA. and FlorschN.2010. Determination of permeability from spectral induced polarization in granular media. Geophysical Journal International181(3), 1480–1498. doi: 10.1111/J.1365‐246X. 2010.04573.x.
    [Google Scholar]
  42. SchindlerU., DurnerW., von UnoldG., MuellerL. and WielandR.2010. The evaporation method: extending the measurement range of soil hydraulic properties using the air‐entry pressure of the ceramic cup. Journal of Plant Nutrition and Soil Science173(4), 563–572.
    [Google Scholar]
  43. SchopperJ.R.1982. Porosität und Permeabilität. In: Landolt‐Börnstein ‐ Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Vol. 1a of Gruppe V: Geophysik und Weltraumforschung, (ed. G.Angenheister ), pp 184–303. Springer‐Verlag: Berlin, Germany.
    [Google Scholar]
  44. SchwarzG.1962. A theory of the low‐frequency dielectric dispersion of colloidal particles in electrolyte solution. Journal of Physical Chemistry66(12), 2636–2642.
    [Google Scholar]
  45. ScottJ.B.T. and BarkerR.D.2003. Determining pore‐throat size in Permo‐Triassic sandstones from low‐frequency electrical spectroscopy. Geophysical Research Letters60(9), 1450. doi: 10.1029/2003GL016951.
    [Google Scholar]
  46. SebastianU.2009. Gesteinskunde: Ein Leitfaden für Einsteiger und Anwender.Spektrum Akademischer Verlag: Heidelberg, Germany. ISBN 978‐3‐8274‐2223‐1.
    [Google Scholar]
  47. SkoldM.E., RevilA. and VaudeletP.2011. The pH dependence of spectral induced polarization of silica sands: Experiment and modeling. Geophysical Research Letters38(12), L12304.
    [Google Scholar]
  48. SlaterL.2007. Near surface electrical characterization of hydraulic conductivity: From petrophysical properties to aquifer geometries – a review. Surveys in Geophysics28, 169–197.
    [Google Scholar]
  49. SlaterL. and GlaserD.R.2003. Controls on induced polarization in sandy unconsolidated sediments and application to aquifer characterization. Geophysics68(5), 1547–1558.
    [Google Scholar]
  50. SlaterL. and LesmesD.P.2002. Electrical‐hydraulic relationships observed for unconsolidated sediments. Water Resources Research38(10), 1213.
    [Google Scholar]
  51. TitovK., KomarovV., TarasovA. and LevitskiA.2002. Theoretical and experimental study of time domain‐induced polarization in water‐saturated sands. Journal of Applied Geophysics50, 417–433.
    [Google Scholar]
  52. TitovK., TarasovA., IlyinY., SeleznevN. and BoydA.2010. Relationships between induced polarization relaxation time and hydraulic properties of sandstone. Geophysical Journal International180, 1095–1106.
    [Google Scholar]
  53. TongM. and TaoH.2008. Permeability estimating from complex resistivity measurement of shaly sand reservoir. Geophysical Journal International173(2), 733–739. doi: 10.1111/j.1365‐246X.2008. 03730.x.
    [Google Scholar]
  54. TongM., LiL., WangW. and JiangY.2006a. Determining capillarypressure curve, pore‐size distribution and permeability from induced polarization of shaley sand. Geophysics71(3), N33–N40. doi: 10.1190/1.2195989.
    [Google Scholar]
  55. TongM., LiL., WangW. and JiangY.2006b. A time‐domain inducedpolarization method for estimating permeability in a shaly sand reservoir. Geophysical Prospecting54(5), 623–631. doi: 10.1111/j.1365‐2478. 2006.00568.x.
    [Google Scholar]
  56. UlrichC. and SlaterL.D.2004. Induced polarization measurements on unsaturated, unconsolidated sands. Geophysics69(3), 762–771.
    [Google Scholar]
  57. van GenuchtenM.T.1980. A closed‐form equation for predicting the hydraulic conductivity of saturated soils. Soil Science Society of America Journal44, 892–898.
    [Google Scholar]
  58. van VoorhisG.D., NelsonP.H. and DrakeT.L.1973. Complex resistivity spectra of porphyry copper mineralization. Geophysics38, 49–60.
    [Google Scholar]
  59. VogelH.J.2000. A numerical experiment on pore size, pore connectivity, water retention, permeability, and solute transport using network models. European Journal of Soil Science51, 99–105.
    [Google Scholar]
  60. WellerA. and SlaterL.2012. Salinity dependence of complex conductivity of unconsolidated and consolidated materials: comparisons with electrical double layer models. Geophysics77(5), D185–D198.
    [Google Scholar]
  61. WellerA., NordsiekS. and DebschützW.2010a. Estimating permeability of sandstone samples by nuclear magnetic resonance and spectral induced polarization. Geophysics75(6), E215–E226.
    [Google Scholar]
  62. WellerA., SlaterL., NordsiekS. and NtarlagiannisD.2010b. On the estimation of specific surface per unit pore volume from induced polarization: a robust empirical relation fits multiple data sets. Geophysics75(4), WA105–WA112.
    [Google Scholar]
  63. WellerA., BreedeK., SlaterL. and NordsiekS.2011. Effect of changing water salinity on complex conductivity spectra of sandstones. Geophysics76(5), F315–F327.
    [Google Scholar]
  64. WellerA., SlaterL. and NordsiekS.2013. On the relationship between induced polarization and surface conductivity: implications for petro‐physical interpretation of electrical measurements. Geophysics78(5), D315–D325. doi: 10.1190/geo2013‐0076.1.
    [Google Scholar]
  65. ZimmermannE., KemnaA., BerwixJ., GlaasW., MünchH.‐M. and HuismanJ.A.2008. A high‐accuracy impedance spectrometer for measuring sediments with low polarizability. Measurement Science and Technology19, 105–603.
    [Google Scholar]
  66. ZisserN., KemnaA. and NoverG.2010. Relationship between lowfrequency electrical properties and hydraulic permeability of low permeability sandstones. Geophysics75(3), E131–E141.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2015050
Loading
/content/journals/10.3997/1873-0604.2015050
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error