1887
Volume 28, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

The Andean Orogen is the type‐example of an active Cordilleran style margin with a long‐lived retroarc fold‐and‐thrust belt and foreland basin. Timing of initial shortening and foreland basin development in Argentina is diachronous along‐strike, with ages varying by 20–30 Myr. The Neuquén Basin (32°S to 40°S) contains a thick sedimentary sequence ranging in age from late Triassic to Cenozoic, which preserves a record of rift, back arc and foreland basin environments. As much of the primary evidence for initial uplift has been overprinted or covered by younger shortening and volcanic activity, basin strata provide the most complete record of early mountain building. Detailed sedimentology and new maximum depositional ages obtained from detrital zircon U–Pb analyses from the Malargüe fold‐and‐thrust belt (35°S) record a facies change between the marine evaporites of the Huitrín Formation (. 122 Ma) and the fluvial sandstones and conglomerates of the Diamante Formation (. 95 Ma). A 25–30 Myr unconformity between the Huitrín and Diamante formations represents the transition from post‐rift thermal subsidence to forebulge erosion during initial flexural loading related to crustal shortening and uplift along the magmatic arc to the west by at least 97 ± 2 Ma. This change in basin style is not marked by any significant difference in provenance and detrital zircon signature. A distinct change in detrital zircons, sandstone composition and palaeocurrent direction from west‐directed to east‐directed occurs instead in the middle Diamante Formation and may reflect the Late Cretaceous transition from forebulge derived sediment in the distal foredeep to proximal foredeep material derived from the thrust belt to the west. This change in palaeoflow represents the migration of the forebulge, and therefore, of the foreland basin system between 80 and 90 Ma in the Malargüe area.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12106
2015-01-21
2024-04-23
Loading full text...

Full text loading...

References

  1. Aguirre Urreta, M.B. & Rawson, P.F. (1997) The ammonite sequence in the Agrio Formation (Lower Cretaceous), Neuquén Basin, Argentina. Geol. Mag., 134(4), 449–458.
    [Google Scholar]
  2. Aguirre‐Urreta, M.B., Tunik, M., Naipauer, M., Pazos, P., Ottone, E., Fanning, M. & Ramos, V.A. (2011) Malargüe Group (Maastrichtian‐Danian) deposits in the Neuquén Andes, Argentina: implications for the onset of the first Atlantic transgression related to Western Gondwana break‐up. Gondwana Res., 19, 482–494.
    [Google Scholar]
  3. Aigner, T. (1985) Modern Storm Depositional Systems: Actualistic Models, pp. 1–50. Springer, Berlin, Heidelberg.
    [Google Scholar]
  4. Allen, J.R.L. (1963) The classification of cross stratified units, with notes on their origin. Sedimentology, 2, 93–114.
    [Google Scholar]
  5. Allmendinger, R.W., Jordan, T.E., Kay, S.M. & Isacks, B.L. (1997) The evolution of the Altiplano‐Puna plateau of the central Andes. Annu. Rev. Earth Planet. Sci., 25(1), 139–174.
    [Google Scholar]
  6. Archuby, F., Wilmsen, M. & Leanza, H. (2011) Integrated stratigraphy of the Upper Hauterivian to Lower Barremian Agua de la Mula Member of the Agrio Formation, Neuquén Basin, Argentina. Acta Geologica Polonica, 61, 1–26.
    [Google Scholar]
  7. Arriagada, C., Cobbold, P.R. & Roperch, P. (2006) Salar de Atacama basin: a record of compressional tectonics in the central Andes since the mid‐Cretaceous. Tectonics, 2, 5.
    [Google Scholar]
  8. Arriagada, C., Roperch, P., Mpodozis, C. & Cobbold, P.R. (2008) Paleogene building of the Bolivian Orocline: tectonic restoration of the central Andes in 2‐D map view. Tectonics, 27, 6.
    [Google Scholar]
  9. Astini, R.A., Benedetto, J.L. & Vaccari, N.E. (1995) The Early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted and collided terrane: a geodynamic model. Geol. Soc. Am. Bull., 107, 235–273.
    [Google Scholar]
  10. Barrio, C.A. (1990a) Late Cretaceous‐Early Tertiary sedimentation in a semi‐arid foreland basin: Neuquén Bain, western Argentina. Sed. Geol., 66, 255–275.
    [Google Scholar]
  11. Barrio, C.A. (1990b) Paleogeographic control of the Upper Cretaceous tidal deposits, Neuquén Basin, Argentina. J. S. Am. Earth Sci., 3, 31–49.
    [Google Scholar]
  12. Batt, R. (1993) Ammonite morphotypes as indicators of oxygenation in a Cretaceous epicontinental sea. Lethaia, 26(1), 49–63.
    [Google Scholar]
  13. Bowen, T.M. & Kraus, M.J. (1981) Vertebrate fossil bearing paleosol units (Willwood Formation, Lower Eocene, northwest Wyoming, USA). Palaeogeogr. Palaeoclimatol. Palaeoecol., 34, 31–56.
    [Google Scholar]
  14. Buck, S.G. (1983) The Saaiplaas Quartzite Member: a braided system of gold‐ and uranium‐bearing channel placers within the Proterozoic Witwatersrand Supergroup of South Africa. In: Modern and Ancient Fluvial Systems (Ed. by CollinsonJ.D. & LewinJ. ) Spec. Publs. Int. Assoc. Sediment., 6, 549–562.
    [Google Scholar]
  15. Burchette, T.P. & Wright, V.P. (1992) Carbonate ramp depositional systems. Sed. Geol., 79(1), 3–57.
    [Google Scholar]
  16. Butler, G.P., Harris, P.M. & Kendall, C.G.S.T.C. (1982) Recent evaporites from the Abu Dhabi coastal flats. Soc. Econ. Paleontol. Min. Core Workshop, 3, 33–64.
    [Google Scholar]
  17. Caminos, R. (1979) Cordillera frontal. Simp. Geol. Reg. Argent., 1, 397–454.
    [Google Scholar]
  18. Carrapa, B., Trimble, J.D. & Stockli, D.F. (2011) Patterns and timing of exhumation and deformation in the Eastern Cordillera of NW Argentina revealed by (U‐Th)/He thermochronology. Tectonics, 30, TC3003.
    [Google Scholar]
  19. Carrapa, B., Bywater‐Reyes, S., Decelles, P.G., Mortimer, E. & Gehrels, G.E. (2012) Late Eocene‐Pliocene basin evolution in the Eastern Cordillera of northwestern Argentina (25–26 S): regional implications for Andean orogenic wedge development. Basin Res., 24(3), 249–268.
    [Google Scholar]
  20. Chase, C.G., Sussman, A.J. & Coblentz, D.D. (2009) Curved Andes: geoid, forebulge, and flexure. Lithosphere, 1(6), 358–363.
    [Google Scholar]
  21. Cobbold, P.R. & Rossello, E.A. (2003) Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina. Mar. Pet. Geol., 20, 429–433.
    [Google Scholar]
  22. Daly, M., Chorowicz, J. & Fairhead, J. (1989) Rift basin evolution in Africa: the influence of reactivated steep basement shear zones. Geol. Soc. Lond. Spl. Publ., 44, 309.
    [Google Scholar]
  23. Decelles, P.G. & Giles, K.A. (1996) Foreland basin systems. Basin Res., 8(2), 105–123.
    [Google Scholar]
  24. Decelles, P.G. & Horton, B.K. (2003) Early to middle Tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geol. Soc. Am. Bull., 115(1), 58–77.
    [Google Scholar]
  25. Decelles, P.G., Langford, R.P. & Schwartz, R.K. (1983) Two new methods of paleocurrent determination from trough cross‐stratification. J. Sediment. Res., 53, 629–642.
    [Google Scholar]
  26. Decelles, P.G., Carrapa, B., Horton, B.K. & Gehrels, G.E. (2011) Cenozoic foreland basin system in the central Andes of northwestern Argentina: implications for Andean geodynamics and modes of deformation. Tectonics, 30, 1–30.
    [Google Scholar]
  27. Dewey, J.F. & Bird, J.M. (1970) Mountains belts and new global tectonics. J. Geophys. Res., 75, 2625–2647.
    [Google Scholar]
  28. Di Giulio, A., Ronchi, A., Sanfilippo, A., Tiepolo, M., Pimentel, M. & Ramos, V.A. (2012) Detrital zircon provenance from the Neuquén Basin (south‐central Andes): cretaceous geodynamic evolution and sedimentary response in a retroarc‐foreland basin. Geology, 40(6), 559–562.
    [Google Scholar]
  29. Dickinson, W.R. (1970) Interpreting detrital modes of greywacke and arkose. J. Sediment. Petrol., 40, 695–707.
    [Google Scholar]
  30. Dickinson, W.R. & Gehrels, G.E. (2009) Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett., 288(1), 115–125.
    [Google Scholar]
  31. Dickinson, W.R., Beard, L.S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A. & Ryberg, P.T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Am. Bull., 94, 222–235.
    [Google Scholar]
  32. Droste, H. (1990) Depositional cycles and source rock development in an epeiric intraplatform basin: the Hanifa Formation of the Arabian Peninsula. Sed. Geol., 69, 281–296.
    [Google Scholar]
  33. Dunham, R.J. (1962) Classification of carbonate rocks according to depositional texture, in classification of carbonate rocks (Ed. By W. E. Ham). AAPG Mem., 1, 108–121.
    [Google Scholar]
  34. Eagles, G. (2007) New angles on South Atlantic opening. Geophys. J. Int., 168, 353–361.
    [Google Scholar]
  35. Embry, A.F.III & Klovan, J.E. (1971) A late Devonian reef tract on northeastern Banks Island, N.W.T. Bull. Can. Pet. Geol., 19, 730–781.
    [Google Scholar]
  36. Faulkner, T.J. (1988) The Shipway Limestone of Gower: sedimentation on a storm dominated early Carboniferous ramp. Geol. J., 23, 85–100.
    [Google Scholar]
  37. Fildani, A., Cope, T.D., Graham, S.A. & Wooden, J.L. (2003) Initiation of the Magallanes foreland basin: timing of the southernmost Patagonian Andes orogeny revised by detrital zircon provenance analysis. Geology, 31, 1081–1084.
    [Google Scholar]
  38. Flint, S. (1985) Alluvial fan and playa sedimentation in an Andean arid closed basin: the Pacencia Group, Antofagasta Province, Chile. J. Geol. Soc., 142(3), 533–546.
    [Google Scholar]
  39. Franzese, J.R. & Spalletti, L.A. (2001) Late Triassic–early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre‐break‐up rifting. J. S. Am. Earth Sci., 14, 257–270.
    [Google Scholar]
  40. García Morabito, E., Götze, H.J. & Ramos, V.A. (2011) Tertiary tectonics of the Patagonian Andes retro‐arc area between 38°15′ and 40°00′S latitude. Tectonophysics, 499, 1–21.
    [Google Scholar]
  41. Gazzi, P. (1966) Le arenarie del flysch sopracretaceo dell'Appennino modenese: correlazioni con il flysch di Monghidoro. Mineral. Petrogr. Acta, 12, 69–97.
    [Google Scholar]
  42. Gehrels, G.E., Valencia, V. & Pullen, A. (2006) Detrital zircon geochronology by Laser‐Ablation Multicollector ICPMS at the Arizona LaserChron Center. In: Geochronology: Emerging Opportunities, Paleontology Society Short Course (Ed. by LoszewskiT. & HuffW. ) Paleontol. Soc. Pap., 11, 10.
    [Google Scholar]
  43. Gehrels, G.E., Valencia, V. & Ruiz, J. (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation‐multicollector‐inductively coupled plasma‐mass spectrometry. Geochem. Geophys. Geosyst., 9, Q03017.
    [Google Scholar]
  44. Giambiagi, L.B. & Ramos, V.A. (2002) Structural evolution of the Andes in a transitional zone between flat and normal subduction (33 30′–33 45′ S), Argentina and Chile. J. S. Am. Earth Sci., 15(1), 101–116.
    [Google Scholar]
  45. Giambiagi, L., Bechis, F., García, V. & Clark, A.H. (2008) Temporal and spatial relationships of thick‐and thin‐skinned deformation: a case study from the Malargüe fold‐and‐thrust belt, southern Central Andes. Tectonophysics, 459(1), 123–139.
    [Google Scholar]
  46. Giambiagi, L., Mescua, J.F., Bechis, F., Tassara, A. & Hoke, G. (2012) Thrust belts of the Southern Central Andes: along‐strike variations in shortening, topography, crustal geometry, and denudation. Geol. Soc. Am. Bull., 124, 1339–1351.
    [Google Scholar]
  47. Gregori, D.A., Kostadinoff, J., Strazzere, L. & Raniolo, A. (2008) Tectonic significance and consequences of the Gondwanide orogeny in northern Patagonia, Argentina. Gondwana Res., 14, 429–450.
    [Google Scholar]
  48. Gregori, D.A., Kostadinoff, J., Alvarez, G., Raniolo, A., Strazzere, L., Martínez, J.C. & Barros, M. (2013) Preandean geological configuration of the eastern North Patagonian Massif, Argentina. Geosci. Front., 4(6), 693–708.
    [Google Scholar]
  49. Grier, M.E., Salfity, J.A. & Allmendinger, R.W. (1991) Andean reactivation of the Cretaceous Salta rift, northwestern Argentina. J. S. Am. Earth Sci., 4(4), 351–372.
    [Google Scholar]
  50. Groeber, P. (1929) Líneas fundamentales de la geología del Neuquén, sur de Mendoza y regiones adyacentes. Dir. Nac. Geol. Miner., 58, 1–110. Buenos Aires.
    [Google Scholar]
  51. Handford, C.R. (1991) Marginal marine halite: sabkhas and Salinas. In: Evaporites, Petroleum and Mineral Resources, Developments in Sedimentology (Ed. by J.L.Melvin ), pp. 1–66. Elsevier, Amsterdam.
    [Google Scholar]
  52. Hardie, L.A., Smoot, J.P. & Eugster, H.P. (1978) Saline lakes and their deposits: a sedimentological approach. In: Modern and Ancient Lake Sediments (Ed. by MatterA. & TuckerM.E. ) Int. Assoc. Sedimentol., Spec. Publ., 2, 7–41.
    [Google Scholar]
  53. Harms, J.C., Southard, J.B., Spearing, D.R. & Walker, R.G. (1975) Depositional environments as interpreted from primary sedimentary structures and stratification sequences. Soc. Econ. Paleontol. Mineral. Short Course, 2, 161.
    [Google Scholar]
  54. Hartley, A.J., Flint, S., Turner, P. & Jolley, E.J. (1992) Tectonic controls on the development of a semi‐arid, alluvial basis as reflected in the stratigraphy of the Purilactis Group (Upper Cretaceous–Eocene), northern Chile. J. S. Am. Earth Sci., 5, 275–296.
    [Google Scholar]
  55. Hervé, F., Munizaga, F., Parada, M.A., Brook, M., Pankhurst, R.J., Snelling, N.J. & Drake, R. (1988) Granitoids of the coast range of central Chile: geochronology and geologic setting. J. South Am. Earth Sci., 1, 185–194.
    [Google Scholar]
  56. Horton, B.K. & Decelles, P.G. (2001) Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia: Implications for drainage network evolution in fold‐thrust belts. Basin Res., 13, 43–63.
    [Google Scholar]
  57. Howell, J.A., Schwarz, E., Spalletti, L.A. & Veiga, G.D. (2005) The Neuquén Basin: an overview. In: The Neuquén Basin, Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics (Ed. by VeigaG.D. , SpallettiL.A. , HowellJ.A. & SchwarzE. ) Geol. Soc. Lond. Spl Pub., 252, 1–14.
    [Google Scholar]
  58. Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D. & Sares, S.W. (1984) The effect of grain size on detrital modes: a test of the Gazzi‐Dickinson point‐counting method. J. Sediment. Petrol., 54, 103–116.
    [Google Scholar]
  59. James, N.P. & Choquette, P.W. (1984) Diagenesis 9. Limestones‐the meteoric diagenetic environment. Geosci. Can., 11, 4.
    [Google Scholar]
  60. James, N.P. & Kendall, A.C. (1992) Introduction to carbonate and evaporite facies models. Facies Models: Response Sea Level Change: Geol. Assoc. Can., 1, 265–275.
    [Google Scholar]
  61. Jordan, T.E., Isacks, B.L., Allmendinger, R.W., Brewer, J.A., Ramos, V.A. & Ando, C.J. (1983) Andean tectonics related to geometry of subducted Nazca plate. Geol. Soc. Am. Bull., 94, 341–361.
    [Google Scholar]
  62. Kay, S.M., Ramos, V.A., Mpodozis, C. & Sruoga, P. (1989) Late Paleozoic to Jurassic silicic magmatism at the Gondwanaland margin: analogy to the Middle Proterozoic in North America?Geology, 17, 324–328.
    [Google Scholar]
  63. Keidel, J. (1925) Sobre la estructura tectónica de las capas petrolíferas en el oriente del Territorio del Neuquén. Minist. Agric. Dir. Gen. Minas Geol. Hidrol., 8, 1–67. Buenos Aires.
    [Google Scholar]
  64. Kley, J. & Monaldi, C.R. (1998) Tectonic shortening and crustal thickness in the Central Andes: how good is the correlation?Geology, 26(8), 723–726.
    [Google Scholar]
  65. Lazo, D. & Damborenea, S.E. (2011) Barremian Bivalves from the Huitrín formation, West‐Central Argentina: taxonomy and Paleoecology of a Restricted Marine Association. J. Paleontol., 85(4), 719–743.
    [Google Scholar]
  66. Lazo, D.G., Cichowolski, M., Rodriguez, D.L. & Aguierre‐Urreta, M.B. (2005) Lithofacies, palaeoecology and palaeoenvironments of the Agrio Formation, Lower Cretaceous of the Neuquén Basin, Argentina. In: The Neuquén Basin, Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics (Ed. by VeigaG.D. , SpallettiL.A. , HowellJ.A. & SchwarzE. ) Geol. Soc. Lond. Spl Pub., 252, 295–315.
    [Google Scholar]
  67. Leanza, H.A. (2003) Las sedimentitas huitrinianas y rayosianas (Cretácico Inferior) en el ámbito central y meridional de la Cuenca Neuquina, Argentina. Serv. Geol. Min. Argent. Ser. Contrib. Técn.‐Geol., 2, 1–31.
    [Google Scholar]
  68. Leanza, H.A. & Hugo, C.A. (2001) Cretaceous red beds from southern Neuquén Basin (Argentina): age, distribution and stratigraphic discontinuities: VII International Symposium on Mesozoic Terrestrial Ecosystems. Asoc. Paleontól. Argent. Spec. Publ., 7, 111–122.
    [Google Scholar]
  69. Leanza, H.A., Rosenfeld, U., Volkheimer, W. & Zeiss, A. (2000) Facies evolution of the Mesozoic Neuquén Basin (Argentina) in space and time. Z. Angew. Geol., SH1, 95–102.
    [Google Scholar]
  70. Leanza, H.A., Hugo, C.A. & Repol, D. (2001) Hoja Geológica 3969‐I – Zapala, provincia del Neuquén. SEGEMAR Bol., 275, 1–128.
    [Google Scholar]
  71. Leanza, H.A., Apesteguiía, S., Novas, F.E. & de la Fuente, M.S. (2004) Cretaceous terrestrial beds from the Neuquén Basin (Argentina) and their tetrapod assemblages. Cretac. Res., 25, 61–87.
    [Google Scholar]
  72. Legarreta, L., Kokogian, D.A. & Boggetti, D.A. (1989) Depositional sequences of the Malargüe Group (Upper Cretaceous‐Lower Tertiary), Neuquén Basin, Argentina. Cretac. Res., 10, 337–356.
    [Google Scholar]
  73. Ludwig, K. (2008) Isoplot 3.6. Berkeley Geochronology Center Special Publication 4, 77.
  74. Maloney, K.T., Clarke, G.L., Klepeis, K.A. & Quevedo, L. (2013) The Late Jurassic to present evolution of the Andean margin: drivers and the geological record. Tectonics, 32(5), 1049–1065.
    [Google Scholar]
  75. Martínez, F., Arriagada, C., Mpodozis, C. & Peña, M. (2012) The Lautaro Basin: a record of inversion tectonics in northern Chile. Andean Geol., 39(2), 258–278.
    [Google Scholar]
  76. Martínez, F., Arriagada, C., Peña, M., del Real, I. & Deckart, K. (2013) The structure of the Chañarcillo Basin: an example of tectonic inversion in the Atacama region, northern Chile. J. S. Am. Earth Sci., 42, 1–16.
    [Google Scholar]
  77. Mescua, J.F., Giambiagi, L.B. & Ramos, V.A. (2013) Late Cretaceous Uplift in the Malargüe fold‐and‐thrust belt (35 S), southern Central Andes of Argentina and Chile. Andean Geol., 40(1), 102–116.
    [Google Scholar]
  78. Miall, A.D. (1978) Fluvial sedimentology. In: An Historical Review in Fluvial Sedimentology (Ed. by MiallA.D. ) Mem. Can. Soc. Pet. Geol., 5, 1–47.
    [Google Scholar]
  79. Miall, A.D. (1996) The Geology of Fluvial Deposits, Vol. 575. Springer, Berlin.
    [Google Scholar]
  80. Mosquera, A. & Ramos, V.A. (2006) Intraplate deformation in the Neuquén Basin. In: Evolution of an Andean Margin: a Tectonic and Magmatic View from the Andes to the Neuquén Basin (35°–39°S Latitude) (Ed. by KayS.M. & RamosV.A. ) Geol. Soc. Am. Spl Pap., 407, 97–124.
    [Google Scholar]
  81. Moulin, M., Aslanian, D. & Unternehr, P. (2010) A new starting point for the South and Equatorial Atlantic Ocean. Earth Sci. Rev., 98, 1–37.
    [Google Scholar]
  82. Mpodozis, C., Arriagada, C., Basso, M., Roperch, P., Cobbold, P. & Reich, M. (2005) Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama basin, Antofagasta, northern Chile: Implications for the tectonic evolution of the central Andes. Tectonophysics, 399, 125–154.
    [Google Scholar]
  83. Naipauer, M., Vujovich, G.I., Cingolani, C.A. & Mcclelland, W.C. (2010) Detrital Zircon analysis from the Norproterozoice‐Cambrian sedimentary cover (Cuyania Terrane), Sierra de Pie de Palo, Argentina. Evidences of a rift and passive marginsystem?J. South Am. Earth Sci., 29(2), 306–326.
    [Google Scholar]
  84. Naipauer, M., Garcia Morabito, E., Marques, J.C., Tunik, M., Rojas Vera, E.A., Vujovich, G.I., Pimentel, M.P. & Ramos, V.A. (2012) Intraplate Late Jurassic deformation and exhumation in western central Argentina: constraints from surface data and U‐Pb detrital zircon ages. Tectonophysics, 524–525, 59–75.
    [Google Scholar]
  85. Nemec, W. & Steel, R.J. (1984) Alluvial and coastal conglomerates: their signiticant features and some comments on gravelly mass‐flow deposits. In: Sedimentology of Gravels and Conglomerates (Ed. by KosterE.H. & SteelR.J. ) Can. Soc. Pet. Geol. Mem. IO, I–31.
    [Google Scholar]
  86. Niviere, B., Messager, G., Carretier, S. & Lacan, P. (2013) Geomorphic expression of the southern Central Andes forebulge (37°S, Argentina). Terra Nova, doi: 10.1111/ter.12044.
    [Google Scholar]
  87. Nullo, F.E., Stephens, G., Combina, A., Dimieri, L., Baldauf, P. & Bouza, P. (2005) Hoja Geologica Malargüe: Provincia de Mendoza, SEGEMAR, Hoja 3569‐III/3572‐IV.
  88. Nürnberg, D. & Müller, R.D. (1991) The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics, 191, 27–53.
    [Google Scholar]
  89. Orts, S. & Ramos, V.A. (2006) Evidence of Middle to Late Cretaceous compressive deformation in the High Andes of Mendoza, Argentina. Backbone Am. Meet. Abstr. Prog., 5, 65.
    [Google Scholar]
  90. Pankhurst, R., Rapela, C., Saavedra, J., Baldo, E., Dahlquist, J., Pascua, I. & Fanning, C.M. (1998) The Famatinian Magmatic arc in the Central Sierras Pampeanas: An Early to Middle Ordovician Continental Arc on the Gondwana Margin (Ed. by R.J.Pankhurst & C.W.Rapela ), Geol. Soc. Lond. Spl Pub., 142, 343–367.
    [Google Scholar]
  91. Pankhurst, R.J., Rapela, C.W., Fanning, C.M. & Márquez, M. (2006) Gondwanide continental collision and the origin of Patagonia. Earth Sci. Rev., 76, 235–257.
    [Google Scholar]
  92. Pardo‐Casas, F. & Molnar, P. (1987) Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics, 6(3), 233–248.
    [Google Scholar]
  93. Parras, A. & Griffin, M. (2013) Late Cretaceous (Campanian/Maastrichtian) freshwater to restricted marine mollusc fauna from the Loncoche Formation, Neuquén Basin, west‐central Argentina. Cretac. Res., 40, 190–206.
    [Google Scholar]
  94. Pascual, R., Carlini, A.A., Bond, M. & Goin, F.J. (2002) Mamiferos Cenozoicos. In: Geologia y Recursos Naturales de la Provincial de Santa Cruz (Ed. HallerM.J. ) XV Cong. Geol. Argent. Relat. II, 533–544.
    [Google Scholar]
  95. Ramos, V.A. (1984) Patagonia: un continente paleozoico a la deriva?Congr. Geol. Argent., 2, 311–325.
    [Google Scholar]
  96. Ramos, V.A. (1988) Late Proterozoic‐early Paleozoic of South America: a collisional history of southern South America. Episodes, 11, 168–174.
    [Google Scholar]
  97. Ramos, V.A. (1999) Plate tectonic setting of the Andean Cordillera. Episodes, 22(3), 183–190.
    [Google Scholar]
  98. Ramos, V.A. (2004) Cuyania, an exotic block to Gondwana: review of a historical success and the present problems. Gondwana Res., 7(4), 1009–1026.
    [Google Scholar]
  99. Ramos, V.A. (2008) Patagonia: a Paleozoic continent adrift?J. S. Am. Earth Sci., 26, 235–251.
    [Google Scholar]
  100. Ramos, V.A. (2010) The Grenville‐age basement of the Andes. J. S. Am. Earth Sci., 29, 77–91.
    [Google Scholar]
  101. Ramos, V.A. & Folguera, A. (2005) Tectonic evolution of the Andes of Neuquén: constraints derived from the magmatic arc and foreland deformation. In: The Neuquén Basin: A Case Study in Sequence Stratigraphy and Basin Dynamics (Ed. by VeigaG. ), Geol. Soc. Spl Pub., 252, 15–35.
    [Google Scholar]
  102. Rapalini, A.E. (2005) The accretionary history of southern South America from the latest Proterozoic to the Late Paleozoic: some paleomagnetic constraints. In: Terrane Processes at the Margins of Gondwana (Ed. by VaughanA.P.M. , LeatP.T. & PankhurstR.J. ) Geol. Soc. Lond. Spl Pub., 246, 305–328.
    [Google Scholar]
  103. Rapalini, A.E., Lopez de Luchi, M., Tohver, E. & Cawood, P.A. (2013) The South American ancestry of the North Patagonian Massif: geochronologic evidence for an autochthonous orogin?Terra Nova, 25(4), 337–342.
    [Google Scholar]
  104. Rapela, C.W., Pankhurst, R.J., Casquet, C., Baldo, E., Saavedra, J., Galindo, C. & Fanning, C.M. (1998) The Pampean Orogeny of the southern proto‐Andes: Cambrian continental in the Sierras de Córdoba. In: The Proto‐Andean Margin of Gondwana (Ed by. PankhurstR.J. & RapelaC.W. ) Geol. Soc. Lond. Spl Pub., 142, 181–217.
    [Google Scholar]
  105. Rapela, C.W., Pankhurst, R.J., Casquet, C., Fanning, M.C., Baldo, E.G., González‐Casado, J.M., Galindo, C. & Dahlquist, J. (2007) The Río de la Plata craton and the assembly of SW Gondwana. Earth Sci. Rev., 83, 49–82.
    [Google Scholar]
  106. Rasmussen, H. (2000) Nearshore and alluvial facies in the Sant Llorenç del Munt depositional system: recognition and development. Sed. Geol., 138(1), 71–98.
    [Google Scholar]
  107. Reid, R.P., Macintyre, I.G. & Post, J.E. (1992) Micritized skeletal grains in northern Belize lagoon: a major source of Mg‐calcite mud. J. Sed. Res., 62, 145–156.
    [Google Scholar]
  108. Retallack, G.J. (1988) Field recognition of paleosols. Geol. Soc. Am. Spl. Pap., 216, 1–20.
    [Google Scholar]
  109. Rocha‐Campos, A.C., Basei, M.A.S., Nutman, A.P., Kleiman, L.E., Varela, R., Llambías, E., Canile, F.M. & da Rosa, O.D.E.C.R. (2011) 30 million years of Permian volcanism recorded in the Choiyoi igneous province (W Argentina) and their source for younger ash fall deposits in the Paraná Basin: SHRIMP U‐Pb zircón geochronology evidence. Gondwana Res., 19, 509–523.
    [Google Scholar]
  110. Romans, B.W., Fildani, A., Graham, S.A., Hubbard, S.M. & Covault, J.A. (2010) Importance of predecessor basin history on sedimentary fill of a retroarc foreland basin: provenance analysis of the Cretaceous Magallanes basin, Chile (50–52 S). Basin Res., 22(5), 640–658.
    [Google Scholar]
  111. Sato, A.M., González, P.D. & Llambías, E. (2003) Evolución del orógeno Famatiniano en la Sierra de San Luis: magmatismo de arco, deformación y metamorfismo de bajo a alto grado. Rev. Asoc. Geol. Argent., 58(4), 487–504.
    [Google Scholar]
  112. Schellart, W.P. (2008) Overriding plate shortening and extension above subduction zones: a parametric study to explain formation of the Andes Mountains. Geol. Soc. Am. Bull., 120(11–12), 1441–1454.
    [Google Scholar]
  113. Schlager, W. (1991) Depositional bias and environmental change—important factors in sequence stratigraphy. Sed. Geol., 70(2), 109–130.
    [Google Scholar]
  114. Sempere, T., Butler, R.F., Richards, D.R., Marshall, L.G., Sharp, W. & Swisher, C.C. (1997) Stratigraphy and chronology of Late Cretaceousearly Paleogene strata in Bolivia and northwest Argentina. Geol. Soc. Am. Bull., 109, 709–727.
    [Google Scholar]
  115. Seton, M., Muller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shepard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S. & Chandler, M. (2012) Global continental and ocean basin reconstructins since 200 Ma. Earth Sci. Rev., 113, 212–270.
    [Google Scholar]
  116. Schultz, A.W. (1984) Subaerial debris‐flow deposition in the upper Paleozoic Cutler Formation, western Colorado. J. Sediment. Res., 54(3), 759–772.
    [Google Scholar]
  117. Smith, G.A. (1987) The influence of explosive volcanism on fluvial sedimentation: the Deschutes Formation (Neogene) in central Oregon. J. Sediment. Res., 57, 4.
    [Google Scholar]
  118. Spalletti, L.A., Poire, D., Pirrie, D., Matheos, S. & Doyle, P. (2001) Respuesta sedimentológica a cambios en el nivel de base en una secuencia mixta clástica‐carbonática del Cretácico Inferior de la cuenca Neuquina. Argentina, Revista de la Sociedad Geológica de España, 14, 57?74.
    [Google Scholar]
  119. Steinmann, G. (1929) Geologie von Perú, p. 448. Karl Winter, Heidelberg.
    [Google Scholar]
  120. Thomas, W.A. & Astini, R.A. (1996) The Argentine Precordillera: a traveler from the Ouachita embayment of North American Laurentia. Science, 273, 752–757.
    [Google Scholar]
  121. Thomas, W.A. & Astini, R.A. (2003) Ordovician accretion of the Argentine Precordillera terrane to Gondwana: a review. J. S. Am. Earth Sci., 16, 67–79.
    [Google Scholar]
  122. Torsvik, T., Rousse, S., Labails, C. & Smethurst, M. (2009) A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys. J. Int., 177, 1315–1333.
    [Google Scholar]
  123. Tortosa, A., Palomares, M. & Arribas, J. (1991) Quartz grain types in Holocene deposits from the Spanish Central System: some problems in provenance analysis. In: Developments in Sedimentary Provenance Studies (Ed. by MortonA.C. , ToddS.P. & HaughtonP.D.W. ), Geol. Soc. Lond. Spl Pub., 157, 47–54.
    [Google Scholar]
  124. Tucker, M.E. & Wright, V.P. (1990) Carbonate Sedimentology. Blackwell Scientfic Publications, Oxford.
    [Google Scholar]
  125. Tunik, M., Folguera, A., Naipauer, M., Pimentel, M. & Ramos, V.A. (2010) Early uplift and orogenic deformation in the Neuquén Basin: Constraints on the Andean uplift from U‐Pb and Hf isotopic data of detrital zircons. Tectonophysics, 489, 258–273.
    [Google Scholar]
  126. Uliana, M.A. & Dellapé, D.A. (1981) Estratigrafía y evolución paleoambiental de la sucesión maestrichtian o eoterciaria del Egolfamiento Neuquino (Patagonia Septentrional). Octavo Congr. Geol. Argent. (San Luis), 3, 673–711.
    [Google Scholar]
  127. Unternehr, P., Curie, D., Olivet, J.L., Goslin, J. & Benzarty, P. (1988) South Atlantic fits and intraplate boundaries in Africa and South America. Tectonophysics, 155, 169–179.
    [Google Scholar]
  128. Uriz, N.J., Cingolani, C.A., Jr Chemale, F., Macabira, M.B. & Armstrong, R. (2011) Isotopic studies on detrital zircons of Sulurian‐Devonian siliciclastic sequences from Argentinean North Patagonia and Sierra de la Ventana regionas: comparative provenance. Int. J. Sci. (Geol Rundsch), 100, 571–589.
    [Google Scholar]
  129. Veiga, G.D., Howell, J., Belotti, H.J. &Strömbäck, A. (2005) Anatomy of a mixed marine‐non‐marine lowstand wedge in a ramp setting. The record of a Barremian‐Aptian complex relative sea‐level fall in the central Neuquén Basin, Argentina. In: The Neuquén Basin: a Case Study in Sequence Stratigraphy and Basin Dynamics (Ed. by VeigaG.D. , SpallettiL.A. , HowellJ.A. & SchwarzE. ) Geol. Soc. Spec Publ., 252, 139–162.
    [Google Scholar]
  130. Vergani, G.D., Tankard, A.J., Belotti, H.J. & Welsink, H.J. (1995) Tectonic evolution and paleogeography of the Neuquén basin, Argentina. In: Petroleum Basins of South America (Ed. by TankardA.J. , SuarezR. & WelsinkH.J. ) American Association of Petroleum Geologists Memoir, 62, 383–402.
    [Google Scholar]
  131. Warren, J.K. (1991) Sulfate Dominated Sea‐Marginal and Platform Evaporative Settings: Sabkhas and Salinas, Mudflats and Salterns. Dev. Sedimentol., 50, 69–187.
    [Google Scholar]
  132. Weaver, C.E. (1927) The Roca Formation in Argentina. Am. J. Sci., 13, 417–434.
    [Google Scholar]
  133. Weaver, C.W. (1931) Palaeontology of the Jurassic and cretaceous of West central Argentina. Mem. Univ. Wash., 1, 595.
    [Google Scholar]
  134. Willner, A.P., Thomson, S.N., Kröner, A., Wartho, J., Wijbrans, J.R. & Hervé, F. (2005) Time markers for the evolution and exhumation history of a Late Palaeozoic paired metamorphic belt in North Central Chile (34 E‐35 30 S). J. Petrol., 46, 1835–1858.
    [Google Scholar]
  135. Willner, A.P., Gerdes, A. & Massonne, H.J. (2008) History of crustal growth and recycling at the Pacific convergent margin of South America at latitudes 29–36 S revealed by a U‐Pb and Lu‐Hf isotope study of detrital zircon from late Paleozoic accretionary systems. Chem. Geol., 253, 114–129.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12106
Loading
/content/journals/10.1111/bre.12106
Loading

Data & Media loading...

Supplements

Tables with point counting information. (A) Abbreviations used and equations for recalculated values shown in Table 1. (B) Raw point count data.

WORD

 

PDF

Detrital zircon extended methods (A) and datatables (B).

WORD

 

PDF
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error